Adaptive Robust Constraint-Following Control for Lower Limbs Rehabilitation Robot

Xiaolong Chen, Shengchao Zhen, Hao Sun, H. Zhao
{"title":"Adaptive Robust Constraint-Following Control for Lower Limbs Rehabilitation Robot","authors":"Xiaolong Chen, Shengchao Zhen, Hao Sun, H. Zhao","doi":"10.1109/ICMRA.2018.8490575","DOIUrl":null,"url":null,"abstract":"This paper proposes a new control method from the view of constraint-following for lower limbs rehabilitation robot (LLRR) working under passive training mode. The uncertainties existing in LLRR system are also considered. The uncertainties, including modeling error, initial condition deviation, muscle spasm, friction force and other external disturbances, are (possibly) time-varying. They are unknown but bounded. However, the bounds are also unknown. At first, the unilateral man-machine dynamical model with uncertain parameter of the LLRR and a pre-specified traj ectory constraints are given. Based on the model and the constraints, a nominal control can be given by Udwadia and Kalaba theory with no uncertainties. Then, considering the uncertainties existing in the LLRR system, we propose a class of adaptive robust control to compensate the uncertainties. Finally, the effectiveness of the control is shown by numerical simulation.","PeriodicalId":190744,"journal":{"name":"2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMRA.2018.8490575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a new control method from the view of constraint-following for lower limbs rehabilitation robot (LLRR) working under passive training mode. The uncertainties existing in LLRR system are also considered. The uncertainties, including modeling error, initial condition deviation, muscle spasm, friction force and other external disturbances, are (possibly) time-varying. They are unknown but bounded. However, the bounds are also unknown. At first, the unilateral man-machine dynamical model with uncertain parameter of the LLRR and a pre-specified traj ectory constraints are given. Based on the model and the constraints, a nominal control can be given by Udwadia and Kalaba theory with no uncertainties. Then, considering the uncertainties existing in the LLRR system, we propose a class of adaptive robust control to compensate the uncertainties. Finally, the effectiveness of the control is shown by numerical simulation.
下肢康复机器人的鲁棒约束跟随自适应控制
针对被动训练模式下的下肢康复机器人,从约束跟随的角度提出了一种新的控制方法。同时考虑了LLRR系统存在的不确定性。不确定性,包括建模误差、初始条件偏差、肌肉痉挛、摩擦力和其他外部干扰,(可能)是时变的。它们是未知的,但却是有限的。然而,边界也是未知的。首先,给出了具有不确定参数和预定轨迹约束的单侧人机动力学模型;基于模型和约束条件,可以用Udwadia和Kalaba理论给出无不确定性的标称控制。然后,考虑到LLRR系统中存在的不确定性,提出了一类自适应鲁棒控制来补偿不确定性。最后,通过数值仿真验证了控制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信