{"title":"Degradation of Retro-Reflectivity of Thermoplastic Pavement Markings: A Review","authors":"Victor Owusu, Y. Tuffour, D. Obeng, M. Salifu","doi":"10.4236/OJCE.2018.83023","DOIUrl":null,"url":null,"abstract":"For an effective thermoplastic pavement marking replacement strategy, the rate at which the marking’s retro-reflectivity deteriorates in service must be well established in order to avoid re-stripping that is too soon or too late. Against this background, this paper undertook a review of models that deal with degradation of thermoplastic pavement markings under different traffic and environmental conditions in order to establish service life and the terminal retro-reflectivity levels that have informed re-striping. Service life in the context of this paper is the time taken for a newly-installed marking to degrade to some minimum retro-reflectivity level below which motorists would find it difficult to navigate on the carriageway under night-time and poor visibility conditions. It was established that the minimum retro-reflectivity requiring re-stripping intervention reported varied, although commonly-adopted values tended to range from 50 mcd/m2/lx to 150 mcd/m2/lx. A number of empirical models, based on site specific conditions, have been developed by researchers using field data, to estimate marking retro-reflectivity at any time since placement. Whereas some of the models used time as the only independent variable, others used a combination of time, traffic level and a few other parameters to estimate retro-reflectivity. Even though degradation of marking retro-reflectivity is a reflection, among other things of material degeneration impacted by environmental and service conditions, almost all the models reviewed failed to consider environmental factors. Additionally, for some of the models, non-inclusion of the initial retro-reflectivity level and their generally low coefficient of determination statistic erode the confidence in their reliability.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/OJCE.2018.83023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
For an effective thermoplastic pavement marking replacement strategy, the rate at which the marking’s retro-reflectivity deteriorates in service must be well established in order to avoid re-stripping that is too soon or too late. Against this background, this paper undertook a review of models that deal with degradation of thermoplastic pavement markings under different traffic and environmental conditions in order to establish service life and the terminal retro-reflectivity levels that have informed re-striping. Service life in the context of this paper is the time taken for a newly-installed marking to degrade to some minimum retro-reflectivity level below which motorists would find it difficult to navigate on the carriageway under night-time and poor visibility conditions. It was established that the minimum retro-reflectivity requiring re-stripping intervention reported varied, although commonly-adopted values tended to range from 50 mcd/m2/lx to 150 mcd/m2/lx. A number of empirical models, based on site specific conditions, have been developed by researchers using field data, to estimate marking retro-reflectivity at any time since placement. Whereas some of the models used time as the only independent variable, others used a combination of time, traffic level and a few other parameters to estimate retro-reflectivity. Even though degradation of marking retro-reflectivity is a reflection, among other things of material degeneration impacted by environmental and service conditions, almost all the models reviewed failed to consider environmental factors. Additionally, for some of the models, non-inclusion of the initial retro-reflectivity level and their generally low coefficient of determination statistic erode the confidence in their reliability.