A New Secured Cloud Computing Service: A Case Study of Large Scale Linear Regression

J. Ferdush, M. Hashem
{"title":"A New Secured Cloud Computing Service: A Case Study of Large Scale Linear Regression","authors":"J. Ferdush, M. Hashem","doi":"10.1109/CEEICT.2018.8628123","DOIUrl":null,"url":null,"abstract":"Cloud Computing opens new door for the resource-contraints clients to reduce their burden of computation by outsourcing the computation. On the other hand, it is very expensive to compute the large scale linear regression locally but it has great advantages on statistics, economics and data analysis. So, in this paper we are motivated to design a protocol to securely outsourcing of large scale linear regression(LR) to cloud. We use the idea of permutation and padding techniques to hide the original inputs. Compared with previous outsourcing schema, our protocol is efficient with more secured and low complexity.","PeriodicalId":417359,"journal":{"name":"2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT)","volume":"305 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEICT.2018.8628123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud Computing opens new door for the resource-contraints clients to reduce their burden of computation by outsourcing the computation. On the other hand, it is very expensive to compute the large scale linear regression locally but it has great advantages on statistics, economics and data analysis. So, in this paper we are motivated to design a protocol to securely outsourcing of large scale linear regression(LR) to cloud. We use the idea of permutation and padding techniques to hide the original inputs. Compared with previous outsourcing schema, our protocol is efficient with more secured and low complexity.
一种新的安全云计算服务:大规模线性回归的案例研究
云计算为资源受限的客户打开了一扇新的大门,通过外包计算来减少他们的计算负担。另一方面,大规模线性回归的局部计算成本非常高,但在统计学、经济学和数据分析方面具有很大的优势。因此,在本文中,我们有动机设计一个协议来安全地将大规模线性回归(LR)外包到云。我们使用排列和填充技术来隐藏原始输入。与以前的外包模式相比,我们的协议效率高,安全性高,复杂度低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信