{"title":"ODrM* optimal multirobot path planning in low dimensional search spaces","authors":"Cornelia Ferner, Glenn Wagner, H. Choset","doi":"10.1109/ICRA.2013.6631119","DOIUrl":null,"url":null,"abstract":"We believe the core of handling the complexity of coordinated multiagent search lies in identifying which subsets of robots can be safely decoupled, and hence planned for in a lower dimensional space. Our work, as well as those of others take that perspective. In our prior work, we introduced an approach called subdimensional expansion for constructing low-dimensional but sufficient search spaces for multirobot path planning, and an implementation for graph search called M*. Subdimensional expansion dynamically increases the dimensionality of the search space in regions featuring significant robot-robot interactions. In this paper, we integrate M* with Meta-Agent Constraint-Based Search (MA-CBS), a planning framework that seeks to couple repeatedly colliding robots allowing for other robots to be planned in low-dimensional search space. M* is also integrated with operator decomposition (OD), an A*-variant performing lazy search of the outneighbors of a given vertex. We show that the combined algorithm demonstrates state of the art performance.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"360 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6631119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
We believe the core of handling the complexity of coordinated multiagent search lies in identifying which subsets of robots can be safely decoupled, and hence planned for in a lower dimensional space. Our work, as well as those of others take that perspective. In our prior work, we introduced an approach called subdimensional expansion for constructing low-dimensional but sufficient search spaces for multirobot path planning, and an implementation for graph search called M*. Subdimensional expansion dynamically increases the dimensionality of the search space in regions featuring significant robot-robot interactions. In this paper, we integrate M* with Meta-Agent Constraint-Based Search (MA-CBS), a planning framework that seeks to couple repeatedly colliding robots allowing for other robots to be planned in low-dimensional search space. M* is also integrated with operator decomposition (OD), an A*-variant performing lazy search of the outneighbors of a given vertex. We show that the combined algorithm demonstrates state of the art performance.