Online Learning of Danger Avoidance for Complex Structures of Musculoskeletal Humanoids and Its Applications

Kento Kawaharazuka, Naoki Hiraoka, Yuya Koga, Manabu Nishiura, Yusuke Omura, Yuki Asano, K. Okada, Koji Kawasaki, M. Inaba
{"title":"Online Learning of Danger Avoidance for Complex Structures of Musculoskeletal Humanoids and Its Applications","authors":"Kento Kawaharazuka, Naoki Hiraoka, Yuya Koga, Manabu Nishiura, Yusuke Omura, Yuki Asano, K. Okada, Koji Kawasaki, M. Inaba","doi":"10.1109/HUMANOIDS47582.2021.9555792","DOIUrl":null,"url":null,"abstract":"The complex structure of musculoskeletal humanoids makes it difficult to model them, and the inter-body interference and high internal muscle force are unavoidable. Although various safety mechanisms have been developed to solve this problem, it is important not only to deal with the dangers when they occur but also to prevent them from happening. In this study, we propose a method to learn a network outputting danger probability corresponding to the muscle length online so that the robot can gradually prevent dangers from occurring. Applications of this network for control are also described. The method is applied to the musculoskeletal humanoid, Musashi, and its effectiveness is verified.","PeriodicalId":320510,"journal":{"name":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS47582.2021.9555792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The complex structure of musculoskeletal humanoids makes it difficult to model them, and the inter-body interference and high internal muscle force are unavoidable. Although various safety mechanisms have been developed to solve this problem, it is important not only to deal with the dangers when they occur but also to prevent them from happening. In this study, we propose a method to learn a network outputting danger probability corresponding to the muscle length online so that the robot can gradually prevent dangers from occurring. Applications of this network for control are also described. The method is applied to the musculoskeletal humanoid, Musashi, and its effectiveness is verified.
肌肉骨骼类人复杂结构的危险回避在线学习及其应用
肌肉骨骼类人机器人结构复杂,建模难度大,且不可避免地存在体间干扰和较高的肌肉内力。尽管已经开发了各种安全机制来解决这一问题,但重要的是不仅要在危险发生时处理它们,而且要防止它们发生。在本研究中,我们提出了一种在线学习网络输出与肌肉长度对应的危险概率的方法,使机器人能够逐步预防危险的发生。文中还介绍了该网络在控制中的应用。将该方法应用于具有肌肉骨骼的人形机器人武藏,验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信