Contact-Implicit Trajectory Optimization With Learned Deformable Contacts Using Bilevel Optimization

Yifan Zhu, Zherong Pan, Kris K. Hauser
{"title":"Contact-Implicit Trajectory Optimization With Learned Deformable Contacts Using Bilevel Optimization","authors":"Yifan Zhu, Zherong Pan, Kris K. Hauser","doi":"10.1109/ICRA48506.2021.9561521","DOIUrl":null,"url":null,"abstract":"We present a bilevel, contact-implicit trajectory optimization (TO) formulation that searches for robot trajectories with learned soft contact models. On the lower-level, contact forces are solved via a quadratic program (QP) with the maximum dissipation principle (MDP), based on which the dynamics constraints are formulated in the upper-level TO problem that uses direct transcription. Our method uses a contact model for granular media that is learned from physical experiments, but is general to any contact model that is stick-slip, convex, and smooth. We employ a primal interior-point method with a pre-specified duality gap to solve the lower-level problem, which provides robust gradient information to the upper-level problem. We evaluate our method by optimizing locomotion trajectories of a quadruped robot on various granular terrains offline, and show that we can obtain long-horizon walking gaits of high qualities.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a bilevel, contact-implicit trajectory optimization (TO) formulation that searches for robot trajectories with learned soft contact models. On the lower-level, contact forces are solved via a quadratic program (QP) with the maximum dissipation principle (MDP), based on which the dynamics constraints are formulated in the upper-level TO problem that uses direct transcription. Our method uses a contact model for granular media that is learned from physical experiments, but is general to any contact model that is stick-slip, convex, and smooth. We employ a primal interior-point method with a pre-specified duality gap to solve the lower-level problem, which provides robust gradient information to the upper-level problem. We evaluate our method by optimizing locomotion trajectories of a quadruped robot on various granular terrains offline, and show that we can obtain long-horizon walking gaits of high qualities.
基于双层优化的学习变形接触隐式轨迹优化
我们提出了一个双层,接触隐式轨迹优化(TO)公式,搜索机器人轨迹与学习软接触模型。在较低层次上,采用最大耗散原理(MDP)的二次规划(QP)求解接触力,在此基础上,在使用直接转录的上层TO问题中制定了动力学约束。我们的方法使用从物理实验中学习到的颗粒介质的接触模型,但适用于任何粘滑、凸和光滑的接触模型。我们采用具有预先指定对偶间隙的原始内点法来解决下一级问题,它为上一级问题提供了鲁棒的梯度信息。通过对四足机器人在各种颗粒地形上的运动轨迹进行离线优化,验证了该方法的有效性,并证明该方法可以获得高质量的长视距步行步态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信