An algorithm for in-the-loop training based on activation function derivative approximation

Jinming Yang, M. Ahmadi, G. Jullien, W. Miller
{"title":"An algorithm for in-the-loop training based on activation function derivative approximation","authors":"Jinming Yang, M. Ahmadi, G. Jullien, W. Miller","doi":"10.1109/MWSCAS.1998.759553","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an algorithm for the in-the-loop training of a VLSI implementation of a neural network with analog neurons and programmable digital weights. The difficulty in evaluating the derivative of nonideal activation functions has been the main obstacle to effectively training a VLSI neural network chip via the standard backpropagation (BP) algorithm. In the paper approximated derivatives have been used in BP algorithm incorporating an adaptive learning rate. An analysis from the viewpoint of optimization shows the proposed algorithm is advantageous. Experimental results indicate that the algorithm is superior to weight perturbation-based algorithms.","PeriodicalId":338994,"journal":{"name":"1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1998.759553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an algorithm for the in-the-loop training of a VLSI implementation of a neural network with analog neurons and programmable digital weights. The difficulty in evaluating the derivative of nonideal activation functions has been the main obstacle to effectively training a VLSI neural network chip via the standard backpropagation (BP) algorithm. In the paper approximated derivatives have been used in BP algorithm incorporating an adaptive learning rate. An analysis from the viewpoint of optimization shows the proposed algorithm is advantageous. Experimental results indicate that the algorithm is superior to weight perturbation-based algorithms.
一种基于激活函数导数逼近的环内训练算法
在本文中,我们提出了一种算法,用于具有模拟神经元和可编程数字权值的神经网络的VLSI实现的环内训练。非理想激活函数导数的求值困难一直是采用标准反向传播(BP)算法有效训练VLSI神经网络芯片的主要障碍。本文将近似导数引入自适应学习率的BP算法中。从优化的角度分析表明,该算法具有一定的优越性。实验结果表明,该算法优于基于权值扰动的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信