Machine Learning Based Data and Signal Analysis Methods for Application in Failure Analysis (2022 Update)

M. Kögel, S. Brand, F. Altmann
{"title":"Machine Learning Based Data and Signal Analysis Methods for Application in Failure Analysis (2022 Update)","authors":"M. Kögel, S. Brand, F. Altmann","doi":"10.31399/asm.cp.istfa2022tps1","DOIUrl":null,"url":null,"abstract":"\n This presentation is an introduction to machine learning techniques and their application in semiconductor failure analysis. The presentation compares and contrasts supervised, unsupervised, and reinforcement learning methods, particularly for neural networks, and lays out the steps of a typical machine learning workflow, including the assessment of data quality. It also presents case studies in which machine learning is used to detect and classify circuit board defects and analyze scanning acoustic microscopy (SAM) data for blind source separation.","PeriodicalId":417175,"journal":{"name":"International Symposium for Testing and Failure Analysis","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2022tps1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This presentation is an introduction to machine learning techniques and their application in semiconductor failure analysis. The presentation compares and contrasts supervised, unsupervised, and reinforcement learning methods, particularly for neural networks, and lays out the steps of a typical machine learning workflow, including the assessment of data quality. It also presents case studies in which machine learning is used to detect and classify circuit board defects and analyze scanning acoustic microscopy (SAM) data for blind source separation.
基于机器学习的数据和信号分析方法在故障分析中的应用(2022年更新)
本演讲介绍机器学习技术及其在半导体失效分析中的应用。该演讲比较和对比了监督、无监督和强化学习方法,特别是神经网络,并列出了典型机器学习工作流程的步骤,包括数据质量评估。它还介绍了使用机器学习来检测和分类电路板缺陷以及分析扫描声学显微镜(SAM)数据进行盲源分离的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信