Predicting Students' Performance in an Introductory Programming Course Using Data from Students' Own Programming Process

Arto Vihavainen
{"title":"Predicting Students' Performance in an Introductory Programming Course Using Data from Students' Own Programming Process","authors":"Arto Vihavainen","doi":"10.1109/ICALT.2013.161","DOIUrl":null,"url":null,"abstract":"As the amount of data, facilities, and tools for understanding students' programming process are improving, the time is ripe for analyzing students' actual programming process. In our current work we are investigating how students' behavior during her programming process (e.g. eagerness to start working on freshly released exercises, following best programming practises) affects the course outcome. We purposefully utilize only data gathered automatically using snapshots from the students' programming process, and do not gather any additional background information. Currently, we are able to predict whether the student is a high-performer, passes the course, or fails the course with a 78%accuracy.","PeriodicalId":301310,"journal":{"name":"2013 IEEE 13th International Conference on Advanced Learning Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 13th International Conference on Advanced Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2013.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

As the amount of data, facilities, and tools for understanding students' programming process are improving, the time is ripe for analyzing students' actual programming process. In our current work we are investigating how students' behavior during her programming process (e.g. eagerness to start working on freshly released exercises, following best programming practises) affects the course outcome. We purposefully utilize only data gathered automatically using snapshots from the students' programming process, and do not gather any additional background information. Currently, we are able to predict whether the student is a high-performer, passes the course, or fails the course with a 78%accuracy.
利用学生自己编程过程的数据预测学生在编程入门课程中的表现
随着用于理解学生编程过程的数据、设备和工具的数量不断增加,分析学生实际编程过程的时机已经成熟。在我们目前的工作中,我们正在调查学生在编程过程中的行为(例如,渴望开始新发布的练习,遵循最佳编程实践)如何影响课程结果。我们有目的地只使用从学生编程过程中自动收集的快照数据,而不收集任何额外的背景信息。目前,我们能够以78%的准确率预测学生是否表现优异,是否通过了这门课程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信