ML estimator based on the EM algorithm for subcarrier SNR estimation in multicarrier transmissions

Jean-Guy Descure, F. Bellili, S. Affes
{"title":"ML estimator based on the EM algorithm for subcarrier SNR estimation in multicarrier transmissions","authors":"Jean-Guy Descure, F. Bellili, S. Affes","doi":"10.1109/AFRCON.2009.5308116","DOIUrl":null,"url":null,"abstract":"In this paper, considering multicarrier transmissions, we present a maximum likelihood estimator of the subcarrier signal-to-noise ratio (SNR) based on the expectation-maximization (EM) algorithm. This new estimator is applicable to any linearly-modulated signal. It is a non-data-aided (NDA) method since no a priori knowledge is assumed about the transmitted data. The channel gains and phase distortions on the different subcarriers are assumed to be constant during the observation window, and the signal is assumed to be corrupted by additive white Gaussian noise (AWGN). The performances of our estimator are empirically assessed using Monte-Carlo simulations, showing that the new algorithm reaches the corresponding Cramér-Rao lower bounds (CRLBs) over a wide SNR range.","PeriodicalId":122830,"journal":{"name":"AFRICON 2009","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AFRICON 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFRCON.2009.5308116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, considering multicarrier transmissions, we present a maximum likelihood estimator of the subcarrier signal-to-noise ratio (SNR) based on the expectation-maximization (EM) algorithm. This new estimator is applicable to any linearly-modulated signal. It is a non-data-aided (NDA) method since no a priori knowledge is assumed about the transmitted data. The channel gains and phase distortions on the different subcarriers are assumed to be constant during the observation window, and the signal is assumed to be corrupted by additive white Gaussian noise (AWGN). The performances of our estimator are empirically assessed using Monte-Carlo simulations, showing that the new algorithm reaches the corresponding Cramér-Rao lower bounds (CRLBs) over a wide SNR range.
基于EM算法的多载波子载波信噪比估计
本文针对多载波传输,提出了一种基于期望最大化算法的子载波信噪比的极大似然估计。该估计器适用于任何线性调制信号。它是一种非数据辅助(NDA)方法,因为它不假设关于传输数据的先验知识。在观测窗口内,假定不同子载波上的信道增益和相位畸变恒定,并假定信号被加性高斯白噪声(AWGN)破坏。我们的估计器的性能通过蒙特卡罗模拟进行了经验评估,表明新算法在较宽的信噪比范围内达到相应的cram - rao下界(CRLBs)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信