A multiobjective ACO algorithm for rough feature selection

Liangjun Ke, Zuren Feng, Zongben Xu, Ke Shang, Yonggang Wang
{"title":"A multiobjective ACO algorithm for rough feature selection","authors":"Liangjun Ke, Zuren Feng, Zongben Xu, Ke Shang, Yonggang Wang","doi":"10.1109/PACCS.2010.5627071","DOIUrl":null,"url":null,"abstract":"Rough set theory has been widely applied to feature selection. In this paper, a multi-objective ant colony optimization algorithm is proposed for rough feature selection. This algorithm evaluates the constructed solutions on the basis of Pareto dominance. Moreover, it only uses the non-dominated solutions to add pheromone so as to reinforce the exploitation and adopts crowding comparison operator to maintain the diversity of the constructed solutions. In addition, it avoids premature convergence by imposing limits on pheromone values. Numerical experiments are carried out on gene expression datasets. Compared with a modified non-dominated sorting genetic algorithm, our algorithm can provide competitive solutions efficiently for rough feature selection.","PeriodicalId":431294,"journal":{"name":"2010 Second Pacific-Asia Conference on Circuits, Communications and System","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second Pacific-Asia Conference on Circuits, Communications and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACCS.2010.5627071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Rough set theory has been widely applied to feature selection. In this paper, a multi-objective ant colony optimization algorithm is proposed for rough feature selection. This algorithm evaluates the constructed solutions on the basis of Pareto dominance. Moreover, it only uses the non-dominated solutions to add pheromone so as to reinforce the exploitation and adopts crowding comparison operator to maintain the diversity of the constructed solutions. In addition, it avoids premature convergence by imposing limits on pheromone values. Numerical experiments are carried out on gene expression datasets. Compared with a modified non-dominated sorting genetic algorithm, our algorithm can provide competitive solutions efficiently for rough feature selection.
粗糙特征选择的多目标蚁群算法
粗糙集理论在特征选择中得到了广泛的应用。本文提出了一种多目标蚁群优化算法进行粗糙特征选择。该算法基于Pareto支配性对构造的解进行评价。并且只使用非支配解添加信息素来加强开发,并采用拥挤比较算子来保持构造解的多样性。此外,它通过对信息素值施加限制来避免过早收敛。在基因表达数据集上进行了数值实验。与一种改进的非支配排序遗传算法相比,该算法能够有效地为粗糙特征选择提供竞争解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信