Diagnostic and model validation of a faulty induction motor drive via wavelet decomposition

L. Cristaldi, M. Lazzaroni, A. Monti, F. Ponci
{"title":"Diagnostic and model validation of a faulty induction motor drive via wavelet decomposition","authors":"L. Cristaldi, M. Lazzaroni, A. Monti, F. Ponci","doi":"10.1109/IMTC.2004.1351342","DOIUrl":null,"url":null,"abstract":"An approach to the analysis of the AC side current is presented for the purpose of identification of faults in the stator phase resistance of an AC induction motor drive. The method relies on the correlation between wavelet decomposition coefficients of the current in healthy and faulty conditions. The findings highlight that the fault causes waveform variations localized at specific decomposition levels. The presented approach may open the way to efficient training for fault recognition systems.","PeriodicalId":386903,"journal":{"name":"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2004.1351342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An approach to the analysis of the AC side current is presented for the purpose of identification of faults in the stator phase resistance of an AC induction motor drive. The method relies on the correlation between wavelet decomposition coefficients of the current in healthy and faulty conditions. The findings highlight that the fault causes waveform variations localized at specific decomposition levels. The presented approach may open the way to efficient training for fault recognition systems.
基于小波分解的感应电机故障诊断与模型验证
提出了一种分析交流侧电流的方法,用于识别交流感应电动机的定子相电阻故障。该方法依赖于健康状态和故障状态下电流的小波分解系数之间的相关性。研究结果强调,断层导致的波形变化局限于特定的分解水平。本文提出的方法为故障识别系统的有效训练开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信