Electronic differential design for a vehicle with four independently controlled in-wheel motors

A. Hajihosseinlu, S. Filizadeh, Garry Bistyak, E. Dirks
{"title":"Electronic differential design for a vehicle with four independently controlled in-wheel motors","authors":"A. Hajihosseinlu, S. Filizadeh, Garry Bistyak, E. Dirks","doi":"10.1109/IEVC.2014.7056129","DOIUrl":null,"url":null,"abstract":"In this paper a simple topology for electronic differential in an electric vehicle with four independent In-wheel motors is proposed. Based on inputs of the steering wheel angle and the acceleration pedal position, this method uses real-time power management and produces different torque references for the four wheels and, consequently the angular velocity of each wheel will be adjusted. Using slip-ratio calculations the proposed algorithm extracts maximum output torque by optimizing the operating-point slip ratio. The paper also highlights an application of deployed in-wheel motors in yaw stability and suggests a simple yaw control strategy. The proposed electronic differential method is first investigated using MATLAB and is then implemented on a real-time digital simulator, which is then connected to a small motor to verify its performance in a hardware-in-loop scheme.","PeriodicalId":223794,"journal":{"name":"2014 IEEE International Electric Vehicle Conference (IEVC)","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electric Vehicle Conference (IEVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEVC.2014.7056129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper a simple topology for electronic differential in an electric vehicle with four independent In-wheel motors is proposed. Based on inputs of the steering wheel angle and the acceleration pedal position, this method uses real-time power management and produces different torque references for the four wheels and, consequently the angular velocity of each wheel will be adjusted. Using slip-ratio calculations the proposed algorithm extracts maximum output torque by optimizing the operating-point slip ratio. The paper also highlights an application of deployed in-wheel motors in yaw stability and suggests a simple yaw control strategy. The proposed electronic differential method is first investigated using MATLAB and is then implemented on a real-time digital simulator, which is then connected to a small motor to verify its performance in a hardware-in-loop scheme.
带有四个独立控制轮内电机的车辆的电子差速器设计
本文提出了一种具有四个独立轮毂电机的电动汽车电子差速器的简单拓扑结构。该方法基于方向盘角度和加速踏板位置的输入,进行实时动力管理,为四个车轮产生不同的扭矩参考,从而调整每个车轮的角速度。该算法通过计算滑差率,优化工作点滑差率,提取最大输出转矩。本文还重点介绍了轮毂电机在偏航稳定性中的应用,并提出了一种简单的偏航控制策略。首先使用MATLAB对所提出的电子差分方法进行了研究,然后在实时数字模拟器上实现,然后将其连接到一个小型电机上,以验证其在硬件在环方案中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信