An isolated word recognizer system based on corrective training

J. Gómez-Mena, R. García-Gómez, L. Sanchez-Sandoval
{"title":"An isolated word recognizer system based on corrective training","authors":"J. Gómez-Mena, R. García-Gómez, L. Sanchez-Sandoval","doi":"10.1109/MELCON.1991.162050","DOIUrl":null,"url":null,"abstract":"A corrective training method of the gradient type which is based on the modification of the state transition probabilities is developed. To increase the discrimination between two HMMs (hidden Markov models) lambda /sub 1/ and lambda /sub 2/, Viterbi's algorithm is used to segment the sequence of observations, obtaining for the state i and the sequences O/sup (1)/ and O/sup (2)/ the permanencies in the state i: n/sub i//sup (1)/ n/sub i//sup (2)/, respectively. With this value, the statistics 'of the model are estimated. After a few iterations an acceptable convergence is obtained.<<ETX>>","PeriodicalId":193917,"journal":{"name":"[1991 Proceedings] 6th Mediterranean Electrotechnical Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] 6th Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.1991.162050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A corrective training method of the gradient type which is based on the modification of the state transition probabilities is developed. To increase the discrimination between two HMMs (hidden Markov models) lambda /sub 1/ and lambda /sub 2/, Viterbi's algorithm is used to segment the sequence of observations, obtaining for the state i and the sequences O/sup (1)/ and O/sup (2)/ the permanencies in the state i: n/sub i//sup (1)/ n/sub i//sup (2)/, respectively. With this value, the statistics 'of the model are estimated. After a few iterations an acceptable convergence is obtained.<>
基于纠错训练的孤立词识别系统
提出了一种基于状态转移概率修正的梯度型校正训练方法。为了增加两个hmm(隐马尔可夫模型)lambda /sub 1/和lambda /sub 2/之间的区别,使用Viterbi算法对观测序列进行分割,分别获得状态i和序列O/sup(1)/和O/sup(2)/在状态i中的持久性:n/sub i//sup (1)/ n/sub i//sup(2)/。用这个值来估计模型的统计量。经过几次迭代,得到了一个可接受的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信