A new proof of pick's theorem

S. Minsker
{"title":"A new proof of pick's theorem","authors":"S. Minsker","doi":"10.6028/jres.078b.014","DOIUrl":null,"url":null,"abstract":"f3 real. (See, for instance, [1], p. 224, ex. 4.) We offer the following proof whic h, although it also uses Bieberbach's result, is considerably different. PROOF: Let cP (z) J~ . Then cP sends the open unit disk into itself. Let cP 1= cP and inductively 1 a? define cPn=cP OcPlI t. If cPll(Z)=An,1 z+AIl,z Z2+ . .. ,it is clear that A\"'=M' A I ,2= M' AII ,I = A\", AIl I,t, and A II ,2 = AI ,I A nI,2 + A I,2 A;' _1.1' It follows that An,1 = A;'., and A II ,2 =A I ,zA :' ,-; 1 (l +A 1 , 1 +ALI + . . +A :',-;1). Now cPli/A 11 , 1 E!F for each n, so Bieberbach's theorem implies that IA\" ,2/A\" ,11 :s;: 2, or","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1974-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.078b.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

f3 real. (See, for instance, [1], p. 224, ex. 4.) We offer the following proof whic h, although it also uses Bieberbach's result, is considerably different. PROOF: Let cP (z) J~ . Then cP sends the open unit disk into itself. Let cP 1= cP and inductively 1 a? define cPn=cP OcPlI t. If cPll(Z)=An,1 z+AIl,z Z2+ . .. ,it is clear that A"'=M' A I ,2= M' AII ,I = A", AIl I,t, and A II ,2 = AI ,I A nI,2 + A I,2 A;' _1.1' It follows that An,1 = A;'., and A II ,2 =A I ,zA :' ,-; 1 (l +A 1 , 1 +ALI + . . +A :',-;1). Now cPli/A 11 , 1 E!F for each n, so Bieberbach's theorem implies that IA" ,2/A" ,11 :s;: 2, or
匹克定理的新证明
f3真实。(例如,参见[1],第224页,例4。)我们提供下面的证明,虽然它也使用比伯巴赫的结果,但有很大的不同。证明:设cP (z) J~。然后cP将打开的单元磁盘发送到自己内部。设cp1 = cP,归纳为a?定义cPn=cP OcPlI t.如果cPll(Z)=An, 1z +AIl, zz2 + ..…,显然,A ' '=M' ' AI,2= M' ' AII,I = A ' ', AII,I = A ' ', AII,t,和A ' II,2= AI,I A nI,2 + AI, 2a;' _1.1',由此可见,An,1 = A;, and A I,2 =A I,zA:',-;1 (l +A 1,1 +ALI + . .)+:“,- 1)。现在cPli/ a11,1e !F对应于每一个n,所以比伯巴赫定理意味着IA ',2/A ',11:s;: 2,或
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信