Numerical simulation of Black-Scholes model for American options

A. Khaliq, D. Voss, S. Kazmi
{"title":"Numerical simulation of Black-Scholes model for American options","authors":"A. Khaliq, D. Voss, S. Kazmi","doi":"10.1109/INMIC.2001.995325","DOIUrl":null,"url":null,"abstract":"We consider the penalty method approach, and corresponding numerical schemes, for solving the Black-Scholes model of the American Option. Standard methods involve the need to solve a system of nonlinear equations, evolving from the finite difference discretization of the nonlinear Black-Scholes model, at each time step by a Newton-type iterative procedure. We analyze the well-known linearly implicit /spl theta/-methods that arise by treating the nonlinear penalty term explicitly thus avoiding iteration. In addition, we have implemented an adaptive time step control strategy to increase computational efficiency.","PeriodicalId":286459,"journal":{"name":"Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2001.995325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the penalty method approach, and corresponding numerical schemes, for solving the Black-Scholes model of the American Option. Standard methods involve the need to solve a system of nonlinear equations, evolving from the finite difference discretization of the nonlinear Black-Scholes model, at each time step by a Newton-type iterative procedure. We analyze the well-known linearly implicit /spl theta/-methods that arise by treating the nonlinear penalty term explicitly thus avoiding iteration. In addition, we have implemented an adaptive time step control strategy to increase computational efficiency.
美国期权Black-Scholes模型的数值模拟
本文考虑了求解美式期权的Black-Scholes模型的惩罚方法和相应的数值格式。标准方法涉及到需要求解非线性方程组,从非线性布莱克-斯科尔斯模型的有限差分离散化演变而来,在每个时间步上通过牛顿型迭代过程。我们分析了众所周知的线性隐式/spl θ /-方法,这些方法是通过显式处理非线性惩罚项从而避免迭代而产生的。此外,我们还实现了自适应时间步长控制策略,以提高计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信