AI-based Rock-Paper-Scissors plug and play system

Narong Aphiratsakun, X. Blake, Kyi Kyi Tin, Tin Ngwe
{"title":"AI-based Rock-Paper-Scissors plug and play system","authors":"Narong Aphiratsakun, X. Blake, Kyi Kyi Tin, Tin Ngwe","doi":"10.1109/iSTEM-Ed50324.2020.9332629","DOIUrl":null,"url":null,"abstract":"In this paper, we present a plug and play Rock-Paper-Scissors game set that utilizes CNN-based static hand gesture recognition and a Markov chain-based bot. Each game round, the camera output is fed to the neural network and the hand gesture result is compared to the current Markov chain state. We utilize a CNN trained with a dataset containing rock-paperscissors hand gestures and unwanted inputs, and a multi-state Markov chain. Automated tests confirm the bot prediction capabilities and practical tests verify the precision of static hand gesture recognition. Tests against a verification dataset reveal a recognition accuracy of 97.4%.","PeriodicalId":241573,"journal":{"name":"2020 5th International STEM Education Conference (iSTEM-Ed)","volume":"466 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International STEM Education Conference (iSTEM-Ed)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSTEM-Ed50324.2020.9332629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a plug and play Rock-Paper-Scissors game set that utilizes CNN-based static hand gesture recognition and a Markov chain-based bot. Each game round, the camera output is fed to the neural network and the hand gesture result is compared to the current Markov chain state. We utilize a CNN trained with a dataset containing rock-paperscissors hand gestures and unwanted inputs, and a multi-state Markov chain. Automated tests confirm the bot prediction capabilities and practical tests verify the precision of static hand gesture recognition. Tests against a verification dataset reveal a recognition accuracy of 97.4%.
基于人工智能的石头剪刀布即插即用系统
在本文中,我们提出了一个即插即用的石头剪刀布游戏集,该游戏集利用了基于cnn的静态手势识别和基于马尔可夫链的机器人。每个游戏回合,相机输出被馈送到神经网络,手势结果与当前马尔可夫链状态进行比较。我们使用的CNN训练数据集包含石头剪刀布手势和不需要的输入,以及多状态马尔可夫链。自动化测试证实了机器人的预测能力,实际测试验证了静态手势识别的准确性。针对验证数据集的测试显示,识别准确率为97.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信