{"title":"The Optimization Problem of Batik Cloth Production with Fuzzy Multi-Objective Linear Programming and Application of Branch and Bound Method","authors":"Fevi Hanesti, Wardi Syafmen, Syamsyida Rozi","doi":"10.15575/kubik.v7i1.18432","DOIUrl":null,"url":null,"abstract":"This study discussed fuzzy multi-objective linear programming (FMOLP) and its application. This research was conducted in Rumah Batik Mentari Jambi, which produces five batik motifs typical of the Jambi. In this research, the tolerance for additional raw material capacity is included in the model. This research aims to find out the number of tolerances needed, the maximum number of batik needed to be produced, and the minimum production time so that the producer can earn the maximum profit. The decision variables in FMOLP are the number of pieces of batik measuring in 2m2, which means the decision variables must be an integer. Therefore, after obtaining the optimal solution from FMOLP, then proceed with the branch and bound method to obtain the integer solution. The result of this research is that the addition of raw materials needed to earn optimal solutions is as much as 50% of the tolerance assumed in the model. Thus, owner can earn the optimal profit of Rp. 5,675,800.00/week by producing as many as 67 pieces of batik with the design of angso duo, 18 pieces with the design of gentala, and 50 pieces with the design of batang hari, and the minimum production time is 270 hours/week.","PeriodicalId":300313,"journal":{"name":"Kubik: Jurnal Publikasi Ilmiah Matematika","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kubik: Jurnal Publikasi Ilmiah Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15575/kubik.v7i1.18432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study discussed fuzzy multi-objective linear programming (FMOLP) and its application. This research was conducted in Rumah Batik Mentari Jambi, which produces five batik motifs typical of the Jambi. In this research, the tolerance for additional raw material capacity is included in the model. This research aims to find out the number of tolerances needed, the maximum number of batik needed to be produced, and the minimum production time so that the producer can earn the maximum profit. The decision variables in FMOLP are the number of pieces of batik measuring in 2m2, which means the decision variables must be an integer. Therefore, after obtaining the optimal solution from FMOLP, then proceed with the branch and bound method to obtain the integer solution. The result of this research is that the addition of raw materials needed to earn optimal solutions is as much as 50% of the tolerance assumed in the model. Thus, owner can earn the optimal profit of Rp. 5,675,800.00/week by producing as many as 67 pieces of batik with the design of angso duo, 18 pieces with the design of gentala, and 50 pieces with the design of batang hari, and the minimum production time is 270 hours/week.