Ring Formation Maneuvering with Double Integrator Dynamics*

Dzung Tran, D. Casbeer, Eloy García, Isaac E. Weintraub, D. Milutinović
{"title":"Ring Formation Maneuvering with Double Integrator Dynamics*","authors":"Dzung Tran, D. Casbeer, Eloy García, Isaac E. Weintraub, D. Milutinović","doi":"10.1109/ICUAS51884.2021.9476770","DOIUrl":null,"url":null,"abstract":"Conventional leader-follower formations restrict the follower to a single desired position relative to the leader. To give the follower more flexibility in motion and to replicate typical human pilot operations, in this paper we propose a control architecture allowing the follower to converge to a ring, which is a set of desired points, relative to the leader. The follower is considered subject to a point-mass aircraft model, which can be transformed into the double integrator kinematics. For that reason, the nonlinear backstepping method is first utilized to design the controller for the double integrator kinematics with input saturation constraints being taken into account. The controller is then converted into control variables for the point-mass model. The stability of the proposed architecture is analyzed. Finally, a numerical example is presented to illustrate the efficacy of the proposed controller.","PeriodicalId":423195,"journal":{"name":"2021 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS51884.2021.9476770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Conventional leader-follower formations restrict the follower to a single desired position relative to the leader. To give the follower more flexibility in motion and to replicate typical human pilot operations, in this paper we propose a control architecture allowing the follower to converge to a ring, which is a set of desired points, relative to the leader. The follower is considered subject to a point-mass aircraft model, which can be transformed into the double integrator kinematics. For that reason, the nonlinear backstepping method is first utilized to design the controller for the double integrator kinematics with input saturation constraints being taken into account. The controller is then converted into control variables for the point-mass model. The stability of the proposed architecture is analyzed. Finally, a numerical example is presented to illustrate the efficacy of the proposed controller.
环形编队机动与双积分器动力学*
传统的领导-跟随者形式将跟随者限制在相对于领导者的单一期望位置。为了给跟随者更多的运动灵活性,并复制典型的人类飞行员操作,在本文中,我们提出了一种控制体系结构,允许跟随者收敛到一个环,这是一组期望的点,相对于领导者。考虑从动件服从点质量飞行器模型,该模型可转化为双积分运动学。为此,首先利用非线性反推法设计了考虑输入饱和约束的双积分器运动学控制器。然后将控制器转换为点质量模型的控制变量。分析了所提体系结构的稳定性。最后,给出了一个数值算例来说明所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信