Efficient Discharge Waveform Distribution Measurement Using Active Machine Learning

Yuting Xie, Ling Zhang, Junhui Chen, Da Li, Zhenzhong Yang, Dan Ren, Erping Li
{"title":"Efficient Discharge Waveform Distribution Measurement Using Active Machine Learning","authors":"Yuting Xie, Ling Zhang, Junhui Chen, Da Li, Zhenzhong Yang, Dan Ren, Erping Li","doi":"10.1109/EDAPS56906.2022.9995150","DOIUrl":null,"url":null,"abstract":"Near-field scanning (NFS) is a promising method to capture the current propagation in an electronic system through an automated scanning system. This article presents a novel and efficient measurement method for discharge waveform distribution based on active machine learning using NFS. Implicitly, the query-by-committee (QBC) active learning method is adopted to select scanning points with high uncertainty. The proposed approach is computationally efficient in real-time NFS, demonstrates higher reconstruction accuracy than random sampling using the same amount of sparse samples, and is much more efficient than full scanning.","PeriodicalId":401014,"journal":{"name":"2022 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"1190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS56906.2022.9995150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Near-field scanning (NFS) is a promising method to capture the current propagation in an electronic system through an automated scanning system. This article presents a novel and efficient measurement method for discharge waveform distribution based on active machine learning using NFS. Implicitly, the query-by-committee (QBC) active learning method is adopted to select scanning points with high uncertainty. The proposed approach is computationally efficient in real-time NFS, demonstrates higher reconstruction accuracy than random sampling using the same amount of sparse samples, and is much more efficient than full scanning.
基于主动机器学习的高效放电波形分布测量
近场扫描(NFS)是一种很有前途的通过自动扫描系统来捕捉电子系统中电流传播的方法。本文提出了一种基于主动机器学习的新型高效放电波形分布测量方法。隐式地采用按委员会查询(query-by-committee, QBC)主动学习方法来选择具有高不确定性的扫描点。该方法在实时NFS中计算效率高,在使用相同数量的稀疏样本的情况下,比随机抽样显示出更高的重建精度,并且比完全扫描效率高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信