Computational Relaxed TP Model Transformation by Restriction of the Computation to Subspaces of the Dynamic Model

S. Nagy, Z. Petres, P. Baranyi, H. Hashimoto
{"title":"Computational Relaxed TP Model Transformation by Restriction of the Computation to Subspaces of the Dynamic Model","authors":"S. Nagy, Z. Petres, P. Baranyi, H. Hashimoto","doi":"10.1109/ISCIII.2007.367370","DOIUrl":null,"url":null,"abstract":"The Tensor-Product (TP) model transformation Is a recently proposed numerical method capable of transforming linear parameter varying state-space models to the Higher Order Singular Value Decomposition (HOSVD) based canonical form of polytopic models. It is also capable of generating various types of convex TP models as well for linear matrix inequality based control design. The crucial point of the TP model transformation is that its computational load exponentially explodes with the dimensionality of the parameter vector of the state-space model. In this paper we propose a modified TP model transformation that computes the HOSVD-based canonical form by dimensionality reduced sub-spaces of the parameter vector that leads to the considerable reduction of the computation. A numerical example is also given to show how the modified TP model transformation can readily be executed in cases when the original TP model transformation fails.","PeriodicalId":314768,"journal":{"name":"2007 International Symposium on Computational Intelligence and Intelligent Informatics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIII.2007.367370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The Tensor-Product (TP) model transformation Is a recently proposed numerical method capable of transforming linear parameter varying state-space models to the Higher Order Singular Value Decomposition (HOSVD) based canonical form of polytopic models. It is also capable of generating various types of convex TP models as well for linear matrix inequality based control design. The crucial point of the TP model transformation is that its computational load exponentially explodes with the dimensionality of the parameter vector of the state-space model. In this paper we propose a modified TP model transformation that computes the HOSVD-based canonical form by dimensionality reduced sub-spaces of the parameter vector that leads to the considerable reduction of the computation. A numerical example is also given to show how the modified TP model transformation can readily be executed in cases when the original TP model transformation fails.
基于动态模型子空间计算约束的计算松弛TP模型转换
张量-积(TP)模型变换是近年来提出的一种将线性参数变化状态空间模型转换为基于高阶奇异值分解(HOSVD)的多边形模型规范形式的数值方法。它还能够生成各种类型的凸TP模型以及基于线性矩阵不等式的控制设计。TP模型转换的关键在于其计算量随着状态空间模型参数向量的维数呈指数级增长。在本文中,我们提出了一种改进的TP模型转换,通过参数向量的降维子空间来计算基于hosvd的规范形式,从而大大减少了计算量。通过数值算例说明,在原TP模型转换失败的情况下,修改后的TP模型转换可以很容易地执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信