Anthony Byrne, Yanni Pang, Allen Zou, S. Nadgowda, A. Coskun
{"title":"MicroFaaS: Energy-efficient Serverless on Bare-metal Single-board Computers","authors":"Anthony Byrne, Yanni Pang, Allen Zou, S. Nadgowda, A. Coskun","doi":"10.23919/DATE54114.2022.9774688","DOIUrl":null,"url":null,"abstract":"Serverless function-as-a-service (FaaS) platforms offer a radically-new paradigm for cloud software development, yet the hardware infrastructure underlying these platforms is based on a decades-old design pattern. The rise of FaaS presents an opportunity to reimagine cloud infrastructure to be more energy-efficient, cost-effective, reliable, and secure. In this paper, we show how replacing handfuls of x86-based rack servers with hundreds of ARM-based single-board computers could lead to a virtualization-free, energy-proportional cloud that achieves this vision. We call our systematically-designed implementation MicroFaaS, and we conduct a thorough evaluation and cost analysis comparing MicroFaaS to a throughput-matched FaaS platform implemented in the style of conventional virtualization-based cloud systems. Our results show a 5.6x increase in energy efficiency and 34.2% decrease in total cost of ownership compared to our baseline.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Serverless function-as-a-service (FaaS) platforms offer a radically-new paradigm for cloud software development, yet the hardware infrastructure underlying these platforms is based on a decades-old design pattern. The rise of FaaS presents an opportunity to reimagine cloud infrastructure to be more energy-efficient, cost-effective, reliable, and secure. In this paper, we show how replacing handfuls of x86-based rack servers with hundreds of ARM-based single-board computers could lead to a virtualization-free, energy-proportional cloud that achieves this vision. We call our systematically-designed implementation MicroFaaS, and we conduct a thorough evaluation and cost analysis comparing MicroFaaS to a throughput-matched FaaS platform implemented in the style of conventional virtualization-based cloud systems. Our results show a 5.6x increase in energy efficiency and 34.2% decrease in total cost of ownership compared to our baseline.