Collaborative Gaussian mixture model for background subtraction

Yongxin Jiang, Xing Jin, Jun Tang, Zhiyou Zhang
{"title":"Collaborative Gaussian mixture model for background subtraction","authors":"Yongxin Jiang, Xing Jin, Jun Tang, Zhiyou Zhang","doi":"10.1109/ICHCI51889.2020.00062","DOIUrl":null,"url":null,"abstract":"Gaussian mixture per-pixel model cannot handle complex background motion and needs different parameters setting for variant target motion speed scenario. In this paper, a Collaborative Gaussian mixture model for background subtraction is proposed. In which, each pixel was modeled by a background Gaussian mixture model or a foreground Gaussian mixture model. The foreground Gaussian mixture model is respond for pixel value statistics and prepare new background model for the background Gaussian mixture model. The background Gaussian mixture model implement the background Gaussian models update procedure. Furthermore, A periodic control parameter and new parameter update method are proposed to improve the robustness of the algorithm. Evaluation results based on the Cdnet 2012 database are presented in this paper. The results indicate that the proposed algorithm work well on various scenario.","PeriodicalId":355427,"journal":{"name":"2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHCI51889.2020.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian mixture per-pixel model cannot handle complex background motion and needs different parameters setting for variant target motion speed scenario. In this paper, a Collaborative Gaussian mixture model for background subtraction is proposed. In which, each pixel was modeled by a background Gaussian mixture model or a foreground Gaussian mixture model. The foreground Gaussian mixture model is respond for pixel value statistics and prepare new background model for the background Gaussian mixture model. The background Gaussian mixture model implement the background Gaussian models update procedure. Furthermore, A periodic control parameter and new parameter update method are proposed to improve the robustness of the algorithm. Evaluation results based on the Cdnet 2012 database are presented in this paper. The results indicate that the proposed algorithm work well on various scenario.
协同高斯混合背景减法模型
高斯混合每像素模型不能处理复杂的背景运动,并且需要针对不同的目标运动速度场景设置不同的参数。本文提出了一种用于背景减法的协同高斯混合模型。其中,每个像素点采用背景高斯混合模型或前景高斯混合模型进行建模。前景高斯混合模型响应像素值统计,为背景高斯混合模型准备新的背景模型。背景高斯混合模型实现了背景高斯模型的更新过程。此外,提出了一种周期控制参数和新的参数更新方法来提高算法的鲁棒性。本文给出了基于Cdnet 2012数据库的评价结果。结果表明,该算法在各种场景下都能很好地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信