Kazem Cheshmi, M. Soltaniyeh, S. Mohammadi, Jelena Trajkovic
{"title":"Quota setting router architecture for quality of service in GALS NoC","authors":"Kazem Cheshmi, M. Soltaniyeh, S. Mohammadi, Jelena Trajkovic","doi":"10.1109/RSP.2013.6683957","DOIUrl":null,"url":null,"abstract":"Network on Chip (NoC) is a new communication paradigm for emerging multi- and many-core architectures. Despite major benefits, like scalability and power efficiency, it suffers from lack of guaranteed bounded latency. Many contemporary applications, like multimedia and real-time applications, require such a guarantee. The growth of these applications in embedded systems emphasizes the need for guaranteed services in NoCs. Additionally, increasing numbers of cores in NoCs highlights the clock distribution issue. Globally asynchronous locally synchronous (GALS) NoC architectures propose to solve this issue through using asynchronous routers to connect synchronous blocks. This paper presents a novel approach for guaranteed service in a GALS NoC by using router with set port quota. We propose a novel router architecture which facilitates guaranteed latency for accessing shared media. Our simulations show up to 39% improvement in latency, with a negligible (up to 5%) power overhead.","PeriodicalId":227927,"journal":{"name":"2013 International Symposium on Rapid System Prototyping (RSP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Symposium on Rapid System Prototyping (RSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSP.2013.6683957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Network on Chip (NoC) is a new communication paradigm for emerging multi- and many-core architectures. Despite major benefits, like scalability and power efficiency, it suffers from lack of guaranteed bounded latency. Many contemporary applications, like multimedia and real-time applications, require such a guarantee. The growth of these applications in embedded systems emphasizes the need for guaranteed services in NoCs. Additionally, increasing numbers of cores in NoCs highlights the clock distribution issue. Globally asynchronous locally synchronous (GALS) NoC architectures propose to solve this issue through using asynchronous routers to connect synchronous blocks. This paper presents a novel approach for guaranteed service in a GALS NoC by using router with set port quota. We propose a novel router architecture which facilitates guaranteed latency for accessing shared media. Our simulations show up to 39% improvement in latency, with a negligible (up to 5%) power overhead.