{"title":"Building a Large-Scale Microscopic Road Network Traffic Simulator in Apache Spark","authors":"Zishan Fu, Jia Yu, Mohamed Sarwat","doi":"10.1109/MDM.2019.00-42","DOIUrl":null,"url":null,"abstract":"Road network traffic data has been widely studied by researchers and practitioners in different areas such as urban planning, traffic prediction, and spatial-temporal databases. For instance, researchers use such data to evaluate the impact of road network changes. Unfortunately, collecting large-scale high-quality urban traffic data requires tremendous efforts because participating vehicles must install GPS receivers and administrators must continuously monitor these devices. There has been a number of urban traffic simulators trying to generate such data with different features. However, they suffer from two critical issues (1) scalability: most of them only offer single-machine solution which is not adequate to produce large-scale data. Some simulators can generate traffic in parallel but do not well balance the load among machines in a cluster. (2) granularity: many simulators do not consider microscopic traffic situations including traffic lights, lane changing, car following. In the paper, we propose GeoSparkSim, a scalable traffic simulator which extends Apache Spark to generate large-scale road network traffic datasets with microscopic traffic simulation. The proposed system seamlessly integrates with a Spark-based spatial data management system, GeoSpark, to deliver a holistic approach that allows data scientists to simulate, analyze and visualize largescale urban traffic data. To implement microscopic traffic models, GeoSparkSim employs a simulation-aware vehicle partitioning method to partition vehicles among different machines such that each machine has a balanced workload. The experimental analysis shows that GeoSparkSim can simulate the movements of 200 thousand vehicles over a very large road network (250 thousand road junctions and 300 thousand road segments).","PeriodicalId":241426,"journal":{"name":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2019.00-42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Road network traffic data has been widely studied by researchers and practitioners in different areas such as urban planning, traffic prediction, and spatial-temporal databases. For instance, researchers use such data to evaluate the impact of road network changes. Unfortunately, collecting large-scale high-quality urban traffic data requires tremendous efforts because participating vehicles must install GPS receivers and administrators must continuously monitor these devices. There has been a number of urban traffic simulators trying to generate such data with different features. However, they suffer from two critical issues (1) scalability: most of them only offer single-machine solution which is not adequate to produce large-scale data. Some simulators can generate traffic in parallel but do not well balance the load among machines in a cluster. (2) granularity: many simulators do not consider microscopic traffic situations including traffic lights, lane changing, car following. In the paper, we propose GeoSparkSim, a scalable traffic simulator which extends Apache Spark to generate large-scale road network traffic datasets with microscopic traffic simulation. The proposed system seamlessly integrates with a Spark-based spatial data management system, GeoSpark, to deliver a holistic approach that allows data scientists to simulate, analyze and visualize largescale urban traffic data. To implement microscopic traffic models, GeoSparkSim employs a simulation-aware vehicle partitioning method to partition vehicles among different machines such that each machine has a balanced workload. The experimental analysis shows that GeoSparkSim can simulate the movements of 200 thousand vehicles over a very large road network (250 thousand road junctions and 300 thousand road segments).