VitalSimML - A well-formed data structure to Capture Patient Monitoring Scenarios to facilitate the training of nurses via computer-based simulation

Jonathan Currie, R. Bond, P. Mccullagh, P. Black, D. Finlay
{"title":"VitalSimML - A well-formed data structure to Capture Patient Monitoring Scenarios to facilitate the training of nurses via computer-based simulation","authors":"Jonathan Currie, R. Bond, P. Mccullagh, P. Black, D. Finlay","doi":"10.1109/CIC.2015.7408676","DOIUrl":null,"url":null,"abstract":"Introduction: Patient monitoring is both a prevalent and critical nursing duty. Given that it requires the interpretation of vital signs and intricate decision-making, nurses could benefit from simulation-based training. Currently there is a lack of an open data structure for capturing training scenarios that can be used to augment simulation software and virtual reality applications. Methods: Twenty patient monitoring scenarios were analysed to identify the key common elements that are used to provide simulation. These elements aided the development of a data structure for storing training scenarios. Results: A well-formed eXtensible Markup Language (XML) data structure, currently titled VitalSimML, has been developed for capturing patient monitoring scenarios, which can be used for simulation-based training using dynamic intelligent software solutions. Conclusion: VitalSimML is the first attempt at a digital format for capturing patient monitoring scenarios.","PeriodicalId":414802,"journal":{"name":"2015 Computing in Cardiology Conference (CinC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2015.7408676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Introduction: Patient monitoring is both a prevalent and critical nursing duty. Given that it requires the interpretation of vital signs and intricate decision-making, nurses could benefit from simulation-based training. Currently there is a lack of an open data structure for capturing training scenarios that can be used to augment simulation software and virtual reality applications. Methods: Twenty patient monitoring scenarios were analysed to identify the key common elements that are used to provide simulation. These elements aided the development of a data structure for storing training scenarios. Results: A well-formed eXtensible Markup Language (XML) data structure, currently titled VitalSimML, has been developed for capturing patient monitoring scenarios, which can be used for simulation-based training using dynamic intelligent software solutions. Conclusion: VitalSimML is the first attempt at a digital format for capturing patient monitoring scenarios.
VitalSimML -一个格式良好的数据结构,用于捕获患者监测场景,以便通过基于计算机的模拟培训护士
病人监护是一项普遍而关键的护理工作。鉴于它需要解释生命体征和复杂的决策,护士可以从基于模拟的培训中受益。目前,缺乏一种开放的数据结构来捕获可用于增强仿真软件和虚拟现实应用的训练场景。方法:对20个患者监护场景进行分析,确定用于提供模拟的关键共同要素。这些元素有助于开发用于存储训练场景的数据结构。结果:开发了一种格式良好的可扩展标记语言(XML)数据结构,目前名为VitalSimML,用于捕获患者监护场景,可用于使用动态智能软件解决方案进行基于模拟的培训。结论:VitalSimML是第一次尝试捕捉患者监护场景的数字格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信