Static probabilistic timing analysis in presence of faults

Chao-Wu Chen, L. Santinelli, J. Hugues, G. Beltrame
{"title":"Static probabilistic timing analysis in presence of faults","authors":"Chao-Wu Chen, L. Santinelli, J. Hugues, G. Beltrame","doi":"10.1109/SIES.2016.7509422","DOIUrl":null,"url":null,"abstract":"Accurate timing prediction for software execution is becoming a problem due to the increasing complexity of computer architecture, and the presence of mixed-criticality workloads. Probabilistic caches were proposed to set bounds to Worst Case Execution Time (WCET) estimates and help designers improve system resource usage. However, as technology scales down, system fault rates increase and timing behavior is affected. In this paper, we propose a Static Probabilistic Timing Analysis (SPTA) approach for caches with evict-on-miss random replacement policy using a state space modeling technique, with consideration of fault impacts on both timing analysis and task WCET. Different scenarios of transient and permanent faults are investigated. Results show that our proposed approach provides tight probabilistic WCET (pWCET) estimates and as fault rate increases, the timing behavior of the system can be affected significantly.","PeriodicalId":185636,"journal":{"name":"2016 11th IEEE Symposium on Industrial Embedded Systems (SIES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th IEEE Symposium on Industrial Embedded Systems (SIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2016.7509422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Accurate timing prediction for software execution is becoming a problem due to the increasing complexity of computer architecture, and the presence of mixed-criticality workloads. Probabilistic caches were proposed to set bounds to Worst Case Execution Time (WCET) estimates and help designers improve system resource usage. However, as technology scales down, system fault rates increase and timing behavior is affected. In this paper, we propose a Static Probabilistic Timing Analysis (SPTA) approach for caches with evict-on-miss random replacement policy using a state space modeling technique, with consideration of fault impacts on both timing analysis and task WCET. Different scenarios of transient and permanent faults are investigated. Results show that our proposed approach provides tight probabilistic WCET (pWCET) estimates and as fault rate increases, the timing behavior of the system can be affected significantly.
存在故障时的静态概率定时分析
由于计算机体系结构日益复杂,以及混合临界工作负载的存在,软件执行的准确定时预测正成为一个问题。提出了概率缓存来设置最坏情况执行时间(WCET)估计的界限,并帮助设计人员改进系统资源使用。然而,随着技术规模的缩小,系统故障率会增加,定时行为也会受到影响。在本文中,我们提出了一种基于状态空间建模技术的静态概率时序分析(SPTA)方法,该方法考虑了故障对时序分析和任务WCET的影响。研究了瞬态故障和永久故障的不同情况。结果表明,该方法提供了严格的概率WCET (pWCET)估计,并且随着故障率的增加,系统的定时行为会受到显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信