{"title":"Overcoming Challenging Failure Analysis Sample Types on a Single IR/Raman Platform!","authors":"Jay Anderson, M. Lo, E. Dillon, M. Kansiz","doi":"10.31399/asm.cp.istfa2022p0237","DOIUrl":null,"url":null,"abstract":"\n This paper describes a new infrared (IR) technique that offers sub-micron spatial resolution with a pump-probe scheme that can offer simultaneous collection of IR and Raman spectra at the same spatial resolution. The technique uses a single beam to collect both IR and Raman spectra using a technique called Optical Photothermal Infrared (O-PTIR). The O-PTIR technique provides constant spatial resolution over the entire mid-IR range due to the use of a fixed wavelength probe beam at 532 nm. The paper provides examples that highlight the advantages of the novel technique for addressing challenges that are commonly observed in the failure and contamination analysis community.","PeriodicalId":417175,"journal":{"name":"International Symposium for Testing and Failure Analysis","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2022p0237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes a new infrared (IR) technique that offers sub-micron spatial resolution with a pump-probe scheme that can offer simultaneous collection of IR and Raman spectra at the same spatial resolution. The technique uses a single beam to collect both IR and Raman spectra using a technique called Optical Photothermal Infrared (O-PTIR). The O-PTIR technique provides constant spatial resolution over the entire mid-IR range due to the use of a fixed wavelength probe beam at 532 nm. The paper provides examples that highlight the advantages of the novel technique for addressing challenges that are commonly observed in the failure and contamination analysis community.