Worst-case Cramer-Rao bound for parametric estimation of superimposed signals

S. Yau, Y. Bresler
{"title":"Worst-case Cramer-Rao bound for parametric estimation of superimposed signals","authors":"S. Yau, Y. Bresler","doi":"10.1109/SPECT.1990.205572","DOIUrl":null,"url":null,"abstract":"The problem of parameter estimation of superimposed signals in white Gaussian noise is considered and the effect of the amplitude correlation structure on the Cramer-Rao bounds is studied. The best and worst conditions are found using various criteria, and closed form expressions for the bounds, which are free from the nuisance parameters of correlation structure, are derived. The results are applied to the example of parameter estimation of superimposed sinusoids, or plan-wave direction finding in white Gaussian noise, determining best and worst conditions on the signal cross-correlation and relative phases.<<ETX>>","PeriodicalId":117661,"journal":{"name":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPECT.1990.205572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The problem of parameter estimation of superimposed signals in white Gaussian noise is considered and the effect of the amplitude correlation structure on the Cramer-Rao bounds is studied. The best and worst conditions are found using various criteria, and closed form expressions for the bounds, which are free from the nuisance parameters of correlation structure, are derived. The results are applied to the example of parameter estimation of superimposed sinusoids, or plan-wave direction finding in white Gaussian noise, determining best and worst conditions on the signal cross-correlation and relative phases.<>
叠置信号参数估计的最坏情况Cramer-Rao界
考虑了高斯白噪声中叠加信号的参数估计问题,研究了振幅相关结构对Cramer-Rao界的影响。利用各种准则找到了最佳和最差条件,并导出了不受相关结构干扰参数影响的边界的封闭表达式。结果应用于高斯白噪声中叠加正弦波参数估计或平面波测向的实例,确定了信号相互关系和相对相位的最佳和最差条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信