A (μ, λ) evolutionary and particle swarm hybrid algorithm, with an application to dinosaur gait optimization

Y. Matsumura, Ayumu Kobayashi, Kiyotaka Sugiyama, T. Pataky, T. Yasuda, K. Ohkura, Bill Sellers
{"title":"A (μ, λ) evolutionary and particle swarm hybrid algorithm, with an application to dinosaur gait optimization","authors":"Y. Matsumura, Ayumu Kobayashi, Kiyotaka Sugiyama, T. Pataky, T. Yasuda, K. Ohkura, Bill Sellers","doi":"10.1109/IWCIA.2013.6624791","DOIUrl":null,"url":null,"abstract":"A hybrid evolutionary algorithm based on (μ, λ) evolutionary algorithms and particle swarm optimization is proposed for the numerical optimization problems. In order to find out the performance of the hybrid, the computer experiment is tested on dinosaur's gait generation problem. Experimental results show that hybrid optimization finds maximum fitness and is faster in the first phase.","PeriodicalId":257474,"journal":{"name":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2013.6624791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A hybrid evolutionary algorithm based on (μ, λ) evolutionary algorithms and particle swarm optimization is proposed for the numerical optimization problems. In order to find out the performance of the hybrid, the computer experiment is tested on dinosaur's gait generation problem. Experimental results show that hybrid optimization finds maximum fitness and is faster in the first phase.
A (μ, λ)进化与粒子群混合算法,并应用于恐龙步态优化
针对数值优化问题,提出了一种基于(μ, λ)进化算法和粒子群算法的混合进化算法。为了了解该混合算法的性能,对恐龙步态生成问题进行了计算机实验。实验结果表明,混合优化在第一阶段获得最大适应度,且速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信