Document classification using layout analysis

Jianying Hu, R. Kashi, G. Wilfong
{"title":"Document classification using layout analysis","authors":"Jianying Hu, R. Kashi, G. Wilfong","doi":"10.1109/DEXA.1999.795245","DOIUrl":null,"url":null,"abstract":"This paper describes methods for document image classification at the spatial layout level. The goal is to develop fast algorithms for initial document type classification without OCR, which can then be verified using more elaborate methods based on more detailed geometric and syntactic models. A novel feature set called interval encoding is introduced to capture elements of spatial layout. This feature set encodes region layout information in fixed-length vectors by capturing structural characteristics of the image. We demonstrate the usefulness of these features derived from interval coding, in a hidden Markov model based page layout classification system that is trainable and extendible.","PeriodicalId":276867,"journal":{"name":"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99","volume":"373 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.1999.795245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This paper describes methods for document image classification at the spatial layout level. The goal is to develop fast algorithms for initial document type classification without OCR, which can then be verified using more elaborate methods based on more detailed geometric and syntactic models. A novel feature set called interval encoding is introduced to capture elements of spatial layout. This feature set encodes region layout information in fixed-length vectors by capturing structural characteristics of the image. We demonstrate the usefulness of these features derived from interval coding, in a hidden Markov model based page layout classification system that is trainable and extendible.
使用布局分析的文档分类
本文描述了空间布局层次上的文档图像分类方法。目标是开发不使用OCR的初始文档类型分类的快速算法,然后可以使用基于更详细的几何和语法模型的更精细的方法对其进行验证。引入了一种新的特征集——区间编码来捕获空间布局元素。该特征集通过捕获图像的结构特征,将区域布局信息编码为定长向量。我们在一个可训练和可扩展的基于隐马尔可夫模型的页面布局分类系统中展示了这些来自间隔编码的特征的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信