Causality-based planning and diagnostic reasoning for cognitive factories

E. Erdem, Kadir Haspalamutgil, V. Patoglu, T. Uras
{"title":"Causality-based planning and diagnostic reasoning for cognitive factories","authors":"E. Erdem, Kadir Haspalamutgil, V. Patoglu, T. Uras","doi":"10.1109/ETFA.2012.6489636","DOIUrl":null,"url":null,"abstract":"We propose the use of causality-based formal representation and automated reasoning methods from artificial intelligence to endow multiple teams of robots in a factory, with high-level cognitive capabilities, such as, optimal planning and diagnostic reasoning. In particular, we introduce algorithms for finding optimal decoupled plans and diagnosing the cause of a failure/discrepancy (e.g., robots may get broken or tasks may get reassigned to teams). We discuss how these algorithms can be embedded in an execution and monitoring framework effectively by allowing reusability of computed plans in case of failures, and show the applicability of these algorithms on an intelligent factory scenario.","PeriodicalId":222799,"journal":{"name":"Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2012.6489636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We propose the use of causality-based formal representation and automated reasoning methods from artificial intelligence to endow multiple teams of robots in a factory, with high-level cognitive capabilities, such as, optimal planning and diagnostic reasoning. In particular, we introduce algorithms for finding optimal decoupled plans and diagnosing the cause of a failure/discrepancy (e.g., robots may get broken or tasks may get reassigned to teams). We discuss how these algorithms can be embedded in an execution and monitoring framework effectively by allowing reusability of computed plans in case of failures, and show the applicability of these algorithms on an intelligent factory scenario.
基于因果关系的认知工厂规划和诊断推理
我们建议使用基于因果关系的形式表示和人工智能的自动推理方法,赋予工厂中的多个机器人团队高水平的认知能力,如最优规划和诊断推理。特别是,我们引入了用于寻找最佳解耦计划和诊断故障/差异原因的算法(例如,机器人可能会损坏或任务可能被重新分配给团队)。我们讨论了如何通过在故障情况下允许计算计划的可重用性来有效地将这些算法嵌入到执行和监控框架中,并展示了这些算法在智能工厂场景中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信