Image multi-label learning algorithm based on label correlation

Mengyue Huang, Ping Zhao
{"title":"Image multi-label learning algorithm based on label correlation","authors":"Mengyue Huang, Ping Zhao","doi":"10.1109/ICCECE51280.2021.9342484","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of image multi-label classification, the number of sample label categories is large, the output space of corresponding multi-label classification increases exponentially, and the training data is lacking. This paper proposes an image multi-label learning algorithm based on the label correlation residual network-tree model. The algorithm is based on the residual network-tree model for each label category in the sample corresponding to a branch, and independently trains a classifier; the semantic correlation between the labels in the sample is used to select training data for the classifier, and avoid the interference of the missing labels in the sample to the classifier, while at the same time train with the residual network-tree model. The experiment was conducted on the large-scale multi-label data set: Pascal VOC 2007 images. And the results showed that the algorithm proposed in the article was superior to mainstream multi-label classification algorithms in the classification effect of experimental data sets.","PeriodicalId":229425,"journal":{"name":"2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE51280.2021.9342484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at the problem of image multi-label classification, the number of sample label categories is large, the output space of corresponding multi-label classification increases exponentially, and the training data is lacking. This paper proposes an image multi-label learning algorithm based on the label correlation residual network-tree model. The algorithm is based on the residual network-tree model for each label category in the sample corresponding to a branch, and independently trains a classifier; the semantic correlation between the labels in the sample is used to select training data for the classifier, and avoid the interference of the missing labels in the sample to the classifier, while at the same time train with the residual network-tree model. The experiment was conducted on the large-scale multi-label data set: Pascal VOC 2007 images. And the results showed that the algorithm proposed in the article was superior to mainstream multi-label classification algorithms in the classification effect of experimental data sets.
基于标签相关性的图像多标签学习算法
针对图像多标签分类问题,样本标签类别数量大,相应多标签分类的输出空间呈指数级增长,训练数据缺乏。提出了一种基于标签相关残差网络树模型的图像多标签学习算法。该算法基于样本中每个标签类别对应一个分支的残差网络树模型,独立训练分类器;利用样本中标签之间的语义相关性来选择分类器的训练数据,避免样本中缺失标签对分类器的干扰,同时利用残差网络树模型进行训练。实验在大规模多标签数据集Pascal VOC 2007图像上进行。结果表明,本文提出的算法在实验数据集的分类效果上优于主流多标签分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信