{"title":"An active approach for charge balancing in functional electrical stimulation","authors":"K. Sooksood, T. Stieglitz, M. Ortmanns","doi":"10.1109/ISCAS.2009.5117755","DOIUrl":null,"url":null,"abstract":"Charge balancing is a major concern in functional electrical stimulation, since any excess charge accumulation over time leads to electrolysis with electrode dissolution and tissue destruction. This paper presents a new active approach for charge balancing using long-term offset regulation. Therefore, the electrode voltage is briefly monitored after each stimulation cycle and checked if it remains within a predefined voltage range. If not, an offset current is adjusted in order to track the biphasic current mismatch in upcoming stimulations. This technique is compared to a previously introduced active charge balancer and both are verified through experiments on a platinum black electrode in 0.9% saline solution.","PeriodicalId":388394,"journal":{"name":"2009 IEEE International Symposium on Circuits and Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2009.5117755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Charge balancing is a major concern in functional electrical stimulation, since any excess charge accumulation over time leads to electrolysis with electrode dissolution and tissue destruction. This paper presents a new active approach for charge balancing using long-term offset regulation. Therefore, the electrode voltage is briefly monitored after each stimulation cycle and checked if it remains within a predefined voltage range. If not, an offset current is adjusted in order to track the biphasic current mismatch in upcoming stimulations. This technique is compared to a previously introduced active charge balancer and both are verified through experiments on a platinum black electrode in 0.9% saline solution.