Legible action selection in human-robot collaboration

Huaijiang Zhu, Volker Gabler, D. Wollherr
{"title":"Legible action selection in human-robot collaboration","authors":"Huaijiang Zhu, Volker Gabler, D. Wollherr","doi":"10.1109/ROMAN.2017.8172326","DOIUrl":null,"url":null,"abstract":"Humans are error-prone in the presence of multiple similar tasks. While Human-Robot Collaboration (HRC) brings the advantage of combining the superiority of both humans and robots in their respective talents, it also requires the robot to communicate the task goal clearly to the human collaborator. We formalize such problems in interactive assembly tasks with hidden goal Markov decision processes (HGMDPs) to enable the symbiosis of human intention recognition and robot intention expression. In order to avoid the prohibitive computational requirements, we provide a myopic heuristic along with a feature-based state abstraction method for assembly tasks to approximate the solution of the resulting HGMDP. A user study with human subjects in round-based LEGO assembly tasks shows that our algorithm improves HRC and helps the human collaborators when the task goal is unclear to them.","PeriodicalId":134777,"journal":{"name":"2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2017.8172326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Humans are error-prone in the presence of multiple similar tasks. While Human-Robot Collaboration (HRC) brings the advantage of combining the superiority of both humans and robots in their respective talents, it also requires the robot to communicate the task goal clearly to the human collaborator. We formalize such problems in interactive assembly tasks with hidden goal Markov decision processes (HGMDPs) to enable the symbiosis of human intention recognition and robot intention expression. In order to avoid the prohibitive computational requirements, we provide a myopic heuristic along with a feature-based state abstraction method for assembly tasks to approximate the solution of the resulting HGMDP. A user study with human subjects in round-based LEGO assembly tasks shows that our algorithm improves HRC and helps the human collaborators when the task goal is unclear to them.
人机协作中的易读动作选择
人类在面对多个类似任务时很容易出错。人机协作(human - robot Collaboration, HRC)带来了结合人与机器人各自才能优势的同时,也要求机器人将任务目标清晰地传达给人类合作者。我们在具有隐目标马尔可夫决策过程(HGMDPs)的交互式装配任务中形式化了这些问题,以实现人类意图识别和机器人意图表达的共生。为了避免过高的计算需求,我们为装配任务提供了一种近视眼启发式方法以及基于特征的状态抽象方法,以近似得到HGMDP的解。对基于圆形的LEGO组装任务中人类受试者的用户研究表明,我们的算法提高了HRC,并在任务目标不明确时帮助人类合作者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信