Lourdes Arrueta, Douglas Jackson-Smith, Margaret Kalcic
{"title":"Simulating the effects of behavioral and physical heterogeneity on nonpoint source pollution","authors":"Lourdes Arrueta, Douglas Jackson-Smith, Margaret Kalcic","doi":"10.1111/1752-1688.13159","DOIUrl":null,"url":null,"abstract":"<p>To increase the effectiveness of conservation programs focused on reducing agricultural nutrient runoff and targeting management interventions, some have called for greater attention to the role of diversity in both management and physical context. To examine the independent and interactive effects of behavioral and physical heterogeneity on phosphorus loads, a sensitivity analysis was conducted using six different assumptions about distributions of phosphorus fertilizer application rates and soil test phosphorus (STP) levels for hydrologic response units in a SWAT model for the Maumee River Watershed. Results indicated that changing assumptions about behavior and STP levels can significantly affect estimated dissolved reactive phosphorus (DRP) loads and the level of disproportionality, which is a measure of the unequal distribution of pollutant loading. Placing the highest fertilizer application rates on fields with the most excessive STP produced 14% greater estimated DRP load and higher levels of disproportionality compared to a baseline model, where homogeneity in farmer fertilizer behavior and STP were assumed. In contrast, placing the lowest fertilizer application rates on the fields with the most excessive STP led to estimated DRP loads and level of disproportionality that were similar to the baseline model. Results from this analysis suggest that simplistic or uniform assumptions about behavior or STP levels may mask serious environmental risks in agricultural watershed models.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 1","pages":"43-56"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13159","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13159","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
To increase the effectiveness of conservation programs focused on reducing agricultural nutrient runoff and targeting management interventions, some have called for greater attention to the role of diversity in both management and physical context. To examine the independent and interactive effects of behavioral and physical heterogeneity on phosphorus loads, a sensitivity analysis was conducted using six different assumptions about distributions of phosphorus fertilizer application rates and soil test phosphorus (STP) levels for hydrologic response units in a SWAT model for the Maumee River Watershed. Results indicated that changing assumptions about behavior and STP levels can significantly affect estimated dissolved reactive phosphorus (DRP) loads and the level of disproportionality, which is a measure of the unequal distribution of pollutant loading. Placing the highest fertilizer application rates on fields with the most excessive STP produced 14% greater estimated DRP load and higher levels of disproportionality compared to a baseline model, where homogeneity in farmer fertilizer behavior and STP were assumed. In contrast, placing the lowest fertilizer application rates on the fields with the most excessive STP led to estimated DRP loads and level of disproportionality that were similar to the baseline model. Results from this analysis suggest that simplistic or uniform assumptions about behavior or STP levels may mask serious environmental risks in agricultural watershed models.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.