Online Battery Pack State of Charge Estimation via EKF-Fuzzy Logic Joint Method

Letian Wang, A. Savvaris, A. Tsourdos
{"title":"Online Battery Pack State of Charge Estimation via EKF-Fuzzy Logic Joint Method","authors":"Letian Wang, A. Savvaris, A. Tsourdos","doi":"10.1109/CoDIT.2018.8394964","DOIUrl":null,"url":null,"abstract":"Hybrid Electric Propulsion System (HEPS) is attracting growing interest from researchers and other stakeholders working in the field. The pace of technology development is accelerating due to pressures for more energy efficient air vehicles with lower emissions and environmental impact; and to meet ACARE 2050 targets. The battery pack State of Charge (SOC) plays a critical role in the HEPS supervisory controller. In this paper, firstly a new operation-classification battery model is proposed for Li-Po battery. Moreover, since the accuracy of parameter identification is important in state estimation. An event triggered Adaptive Genetic Algorithm (AGA) is used for online parameter identification. Secondly, the Extended Kalman Filter (EKF) is applied for single battery cell SOC estimation. Furthermore, based on maximum and minimum battery cell voltages and SOC values, a Fuzzy Logic Estimator (FLE) is used for pack SOC estimation. Experimental results show that the proposed AGA can effectively track battery parameter variation and the SOC estimation error for single cell and for the complete battery pack with less than 1% error.","PeriodicalId":128011,"journal":{"name":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2018.8394964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Hybrid Electric Propulsion System (HEPS) is attracting growing interest from researchers and other stakeholders working in the field. The pace of technology development is accelerating due to pressures for more energy efficient air vehicles with lower emissions and environmental impact; and to meet ACARE 2050 targets. The battery pack State of Charge (SOC) plays a critical role in the HEPS supervisory controller. In this paper, firstly a new operation-classification battery model is proposed for Li-Po battery. Moreover, since the accuracy of parameter identification is important in state estimation. An event triggered Adaptive Genetic Algorithm (AGA) is used for online parameter identification. Secondly, the Extended Kalman Filter (EKF) is applied for single battery cell SOC estimation. Furthermore, based on maximum and minimum battery cell voltages and SOC values, a Fuzzy Logic Estimator (FLE) is used for pack SOC estimation. Experimental results show that the proposed AGA can effectively track battery parameter variation and the SOC estimation error for single cell and for the complete battery pack with less than 1% error.
基于ekf -模糊逻辑联合法的电池组充电状态在线估计
混合动力推进系统(HEPS)正吸引着越来越多的研究人员和其他利益相关者的兴趣。技术发展的步伐正在加快,这是由于对更节能、排放更低、对环境影响更小的飞行器的压力;实现2050年医保目标。电池组荷电状态(SOC)在HEPS监控控制器中起着至关重要的作用。本文首先提出了一种新的锂电池运行分类模型。此外,由于参数辨识的准确性在状态估计中非常重要。采用事件触发自适应遗传算法(AGA)进行在线参数辨识。其次,将扩展卡尔曼滤波(EKF)应用于单体电池荷电状态估计。此外,基于最大和最小电池电压和荷电状态值,使用模糊逻辑估计器(FLE)进行电池组荷电状态估计。实验结果表明,该算法能够有效地跟踪电池参数的变化,对单个电池和整个电池组的SOC估计误差小于1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信