{"title":"Radar and Camera Fusion based Moving Obstacle Tracking for Automated Vehicles","authors":"Shihao Wang, Zheng Ma, Ying Li, Chao Yang, Weida Wang, C. Xiang","doi":"10.1109/CVCI54083.2021.9661136","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-sensor fusion based environment perception architecture for ground unmanned vehicles is proposed. The target-level multi-sensor fusion technology is presented to take advantages of camera and millimeter wave (MMW) radar in target perception. On this basis, a multi-target tracking model is designed to solve the problems of alignment, association, uncertainty, as well as the elimination of false data. In order to verify the stability and real-time performance of the proposed algorithm, a real vehicle test was implemented according to the statistical data and relevant indicators. The results show that the proposed algorithm can effectively perceive and track multiple obstacles in real scene.","PeriodicalId":419836,"journal":{"name":"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI54083.2021.9661136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a multi-sensor fusion based environment perception architecture for ground unmanned vehicles is proposed. The target-level multi-sensor fusion technology is presented to take advantages of camera and millimeter wave (MMW) radar in target perception. On this basis, a multi-target tracking model is designed to solve the problems of alignment, association, uncertainty, as well as the elimination of false data. In order to verify the stability and real-time performance of the proposed algorithm, a real vehicle test was implemented according to the statistical data and relevant indicators. The results show that the proposed algorithm can effectively perceive and track multiple obstacles in real scene.