Daily Electrical Load Profile Forecasting to Peak Load Pricing Using Artificial Neural Network

M. A. Roselli, A. Gimenes, M. Udaeta
{"title":"Daily Electrical Load Profile Forecasting to Peak Load Pricing Using Artificial Neural Network","authors":"M. A. Roselli, A. Gimenes, M. Udaeta","doi":"10.1109/ICAACCA51523.2021.9465295","DOIUrl":null,"url":null,"abstract":"This paper presents a method of characterizing Load Distribution Networks for peak load pricing, using load profiles sampling from consumer units, commercial distribution database, and climate variables. It is considered rate subgroup, consumer class, and temperature as exogenous variables. The temperature data considered in the model are directly related to load destined for cooling and heating. Modeling is supported by Artificial Neural Networks methodology with Multi-Layer Perceptron architecture and Back-Propagation training algorithm. In a real case study, load profiles in the Brazilian electrical system, from September 2013 to August 2014, are compared with clustering models traditionally used in load profile characterization to peak-load pricing. The model provides a forecast error equivalent to 5.46% in the distribution sector, lower than the forecast error of 23.04% for the clustering model and load typologies.","PeriodicalId":328922,"journal":{"name":"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAACCA51523.2021.9465295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a method of characterizing Load Distribution Networks for peak load pricing, using load profiles sampling from consumer units, commercial distribution database, and climate variables. It is considered rate subgroup, consumer class, and temperature as exogenous variables. The temperature data considered in the model are directly related to load destined for cooling and heating. Modeling is supported by Artificial Neural Networks methodology with Multi-Layer Perceptron architecture and Back-Propagation training algorithm. In a real case study, load profiles in the Brazilian electrical system, from September 2013 to August 2014, are compared with clustering models traditionally used in load profile characterization to peak-load pricing. The model provides a forecast error equivalent to 5.46% in the distribution sector, lower than the forecast error of 23.04% for the clustering model and load typologies.
基于人工神经网络的日负荷分布预测与高峰负荷定价
本文提出了一种表征峰值负荷定价的负荷分配网络的方法,该方法使用来自消费者单位、商业分布数据库和气候变量的负荷概况采样。它被认为是速率子组、消费者类别和温度作为外生变量。模型中考虑的温度数据与供冷和供热负荷直接相关。建模采用多层感知器结构和反向传播训练算法的人工神经网络方法。在一个真实的案例研究中,从2013年9月到2014年8月,巴西电力系统的负荷概况与传统上用于负荷概况表征的聚类模型进行了比较,以确定峰值负荷定价。该模型在配电部门的预测误差为5.46%,低于聚类模型和负荷类型的预测误差23.04%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信