Characterization of the Electrical Behaviour of Thin Dielectric Films at Nanoscale using Methods Derived from Atomic Force Microscopy: Application to Plasma Deposited Agnps-Based Nanocomposites

C. Villeneuve-Faure, K. Makasheva, C. Diaou, L. Boudou, Gilbert Teyssedre
{"title":"Characterization of the Electrical Behaviour of Thin Dielectric Films at Nanoscale using Methods Derived from Atomic Force Microscopy: Application to Plasma Deposited Agnps-Based Nanocomposites","authors":"C. Villeneuve-Faure, K. Makasheva, C. Diaou, L. Boudou, Gilbert Teyssedre","doi":"10.1109/NMDC.2018.8605887","DOIUrl":null,"url":null,"abstract":"Recent advances in the development of micro-and nano-devices call for applications of thin nanocomposite dielectric films (thickness less than few tens of nanometers) with tuneable electrical properties. For optimization purposes, their behaviour under electrical stress needs to be probed at relevant scale, i.e. nanoscale. To that end electrical modes derived from Atomic Force Microscopy (AFM) appear the best methods due to their nanoscale resolution and non-destructive nature which permits in-situ characterization. The potentialities of electrical modes derived from AFM are presented in this work. The samples under study consist of plasma processed thin dielectric silica layers with embedded silver nanoparticles (AgNPs). Charge injection at local scale, performed by using AFM tip, is investigated by Kelvin Probe Force Microscopy (KPFM). Modulation of the local permittivity induced by the presence of AgNPs is assessed by Electrostatic Force Microscopy (EFM).","PeriodicalId":164481,"journal":{"name":"2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC.2018.8605887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recent advances in the development of micro-and nano-devices call for applications of thin nanocomposite dielectric films (thickness less than few tens of nanometers) with tuneable electrical properties. For optimization purposes, their behaviour under electrical stress needs to be probed at relevant scale, i.e. nanoscale. To that end electrical modes derived from Atomic Force Microscopy (AFM) appear the best methods due to their nanoscale resolution and non-destructive nature which permits in-situ characterization. The potentialities of electrical modes derived from AFM are presented in this work. The samples under study consist of plasma processed thin dielectric silica layers with embedded silver nanoparticles (AgNPs). Charge injection at local scale, performed by using AFM tip, is investigated by Kelvin Probe Force Microscopy (KPFM). Modulation of the local permittivity induced by the presence of AgNPs is assessed by Electrostatic Force Microscopy (EFM).
利用原子力显微镜的方法在纳米尺度上表征电介质薄膜的电学行为:在等离子沉积agnps基纳米复合材料中的应用
近年来,微纳米器件的发展要求使用电性能可调的纳米复合介质薄膜(厚度小于几十纳米)。为了优化目的,需要在相关尺度(即纳米尺度)上探测它们在电应力下的行为。为此,原子力显微镜(AFM)衍生的电模式由于其纳米级分辨率和非破坏性特性而成为最佳方法,允许现场表征。在这项工作中,提出了由原子力显微镜导出的电模式的潜力。所研究的样品由等离子体处理的薄介电二氧化硅层和嵌入的银纳米颗粒(AgNPs)组成。利用开尔文探针力显微镜(KPFM)研究了原子力显微镜针尖在局部尺度上的电荷注入。通过静电力显微镜(EFM)评估了AgNPs存在引起的局部介电常数调制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信