Slack matching asynchronous designs

P. Beerel, Nam-Hoon Kim, Andrew Lines, Mike Davies
{"title":"Slack matching asynchronous designs","authors":"P. Beerel, Nam-Hoon Kim, Andrew Lines, Mike Davies","doi":"10.1109/ASYNC.2006.26","DOIUrl":null,"url":null,"abstract":"Slack matching is the problem of adding pipeline buffers to an asynchronous pipelined design in order to prevent stalls and improve performance. This paper addresses the problem of minimizing the cost of additional pipeline buffers needed to achieve a given performance target. An intuitive analysis is given that is then formalized using marked graph theory. This leads to a mixed integer linear programming (MILP) solution of the problem. Theory is then presented that identifies under what circumstances the MILP solution admits a polynomial time solution. For other circumstances, a polynomial-time approximate algorithm using linear programming is proposed. Experimental results on a large set of benchmark circuits demonstrate the computational feasibility and effectiveness of both approaches","PeriodicalId":221135,"journal":{"name":"12th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC'06)","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.2006.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

Slack matching is the problem of adding pipeline buffers to an asynchronous pipelined design in order to prevent stalls and improve performance. This paper addresses the problem of minimizing the cost of additional pipeline buffers needed to achieve a given performance target. An intuitive analysis is given that is then formalized using marked graph theory. This leads to a mixed integer linear programming (MILP) solution of the problem. Theory is then presented that identifies under what circumstances the MILP solution admits a polynomial time solution. For other circumstances, a polynomial-time approximate algorithm using linear programming is proposed. Experimental results on a large set of benchmark circuits demonstrate the computational feasibility and effectiveness of both approaches
松散匹配异步设计
松弛匹配是在异步流水线设计中添加流水线缓冲区以防止失速和提高性能的问题。本文解决了实现给定性能目标所需的额外管道缓冲区成本最小化的问题。给出了一个直观的分析,然后用标记图论形式化。这导致了问题的混合整数线性规划(MILP)解决方案。然后提出了理论,确定在什么情况下MILP解允许多项式时间解。对于其他情况,提出了一种使用线性规划的多项式时间近似算法。在大量基准电路上的实验结果证明了这两种方法的计算可行性和有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信