An 8-Element Frequency-Selective Acoustic Beamformer and Bitstream Feature Extractor with 60 Mel-Frequency Energy Features Enabling 95% Speech Recognition Accuracy

Seungjong Lee, Taewook Kang, John Bell, M. Haghighat, Alberto J. Martinez, M. Flynn
{"title":"An 8-Element Frequency-Selective Acoustic Beamformer and Bitstream Feature Extractor with 60 Mel-Frequency Energy Features Enabling 95% Speech Recognition Accuracy","authors":"Seungjong Lee, Taewook Kang, John Bell, M. Haghighat, Alberto J. Martinez, M. Flynn","doi":"10.1109/vlsicircuits18222.2020.9162783","DOIUrl":null,"url":null,"abstract":"A synergistic approach to beamforming and feature extraction, reduces processing complexity and die area, and delivers the high SNR required for reliable speech recognition. The 1.1mm2 IC combines frequency-selective bitstream beamforming, bitstream Mel frequency-band feature extraction, and an array of continuous-time sigma-delta modulators (SDMs) without area/power-intensive decimation. When coupled with a DNN, the prototype achieves 95.3% accuracy in recognizing spoken words from the Tensorflow dataset.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vlsicircuits18222.2020.9162783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A synergistic approach to beamforming and feature extraction, reduces processing complexity and die area, and delivers the high SNR required for reliable speech recognition. The 1.1mm2 IC combines frequency-selective bitstream beamforming, bitstream Mel frequency-band feature extraction, and an array of continuous-time sigma-delta modulators (SDMs) without area/power-intensive decimation. When coupled with a DNN, the prototype achieves 95.3% accuracy in recognizing spoken words from the Tensorflow dataset.
具有60 mel频率能量特征的8元频率选择声学波束形成器和比特流特征提取器,可实现95%的语音识别精度
波束形成和特征提取的协同方法,降低了处理复杂性和芯片面积,并提供了可靠语音识别所需的高信噪比。这款1.1mm2的集成电路结合了频率选择性比特流波束形成、比特流Mel频带特征提取和一组连续时间sigma-delta调制器(SDMs),无需面积/功耗密集抽取。当与深度神经网络相结合时,该原型在识别来自Tensorflow数据集的口语单词方面达到了95.3%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信