On interpolation of differentially structured images

H. Kirshner, M. Porat
{"title":"On interpolation of differentially structured images","authors":"H. Kirshner, M. Porat","doi":"10.5281/ZENODO.40570","DOIUrl":null,"url":null,"abstract":"A vector space approach to image reconstruction is derived and introduced. The continuous-domain image is assumed to belong to a reproducing kernel Hilbert space and the sampling process is shown to correspond to an appropriate orthogonal projection. The values at the interpolating grid are shown to correspond to a set of inner product calculations, giving rise to a minimax solution for an ℓ2 approximation problem. A tight upper bound on the ensued error is then derived and demonstrated. Examples of image resizing show that the proposed method yields better results than presently available methods, including the cubic B-spline method, in terms of SNR.","PeriodicalId":176384,"journal":{"name":"2007 15th European Signal Processing Conference","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 15th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.40570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A vector space approach to image reconstruction is derived and introduced. The continuous-domain image is assumed to belong to a reproducing kernel Hilbert space and the sampling process is shown to correspond to an appropriate orthogonal projection. The values at the interpolating grid are shown to correspond to a set of inner product calculations, giving rise to a minimax solution for an ℓ2 approximation problem. A tight upper bound on the ensued error is then derived and demonstrated. Examples of image resizing show that the proposed method yields better results than presently available methods, including the cubic B-spline method, in terms of SNR.
差分结构图像的插值
提出并介绍了一种矢量空间图像重建方法。假设连续域图像属于再现核希尔伯特空间,并证明采样过程对应于适当的正交投影。插值网格上的值被显示为对应于一组内积计算,从而产生一个最小最大的解决方案,用于一个l2近似问题。然后推导并论证了相应误差的严密上界。图像调整的实例表明,该方法在信噪比方面优于现有的方法,包括三次b样条方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信