Analysis of unstable periodic solution of nonlinear circuits using Haar wavelet transform

Kohei Takamatsu, Tatsuya Nakabayashi, S. Moro
{"title":"Analysis of unstable periodic solution of nonlinear circuits using Haar wavelet transform","authors":"Kohei Takamatsu, Tatsuya Nakabayashi, S. Moro","doi":"10.1109/ISPACS.2016.7824737","DOIUrl":null,"url":null,"abstract":"It has been reported that unstable periodic solution of a dynamical systems make the chaos control easier. But it is difficult to find unstable periodic solution because of a few numerical errors in numerical calculations. Therefore, in this study, we find unstable periodic solution using Haar wavelet transform. Haar wavelet can be easily treated and differential and integral operator matrices are easily derived by using a block pulse function. Therefore it can be adapted to time variable circuit and nonlinear circuit. Furthermore, it can analyze a range of the singular point neighborhood more precisely. In this paper, we show the method to find unstable periodic solution of the autonomous nonlinear circuit using an oscillator with 5th-power nonlinear order characteristic and prove that it is possible to find unstable periodic solution.","PeriodicalId":131543,"journal":{"name":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2016.7824737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It has been reported that unstable periodic solution of a dynamical systems make the chaos control easier. But it is difficult to find unstable periodic solution because of a few numerical errors in numerical calculations. Therefore, in this study, we find unstable periodic solution using Haar wavelet transform. Haar wavelet can be easily treated and differential and integral operator matrices are easily derived by using a block pulse function. Therefore it can be adapted to time variable circuit and nonlinear circuit. Furthermore, it can analyze a range of the singular point neighborhood more precisely. In this paper, we show the method to find unstable periodic solution of the autonomous nonlinear circuit using an oscillator with 5th-power nonlinear order characteristic and prove that it is possible to find unstable periodic solution.
用Haar小波变换分析非线性电路的不稳定周期解
已有研究表明,动态系统的不稳定周期解使混沌控制变得更加容易。但由于在数值计算中存在一些数值误差,求解不稳定周期解比较困难。因此,在本研究中,我们利用Haar小波变换寻找不稳定周期解。利用块脉冲函数可以很容易地处理哈尔小波,并且可以很容易地导出微分和积分算子矩阵。因此,它可以适应时变电路和非线性电路。此外,该方法还能更精确地分析奇异点邻域范围。本文给出了利用5次非线性阶特性的振荡器求解自主非线性电路不稳定周期解的方法,并证明了求解不稳定周期解的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信