Model-based processing of multifrequency polarimetric SAR images of urban areas

Tiziana Maci-L, Pierfrancesco Lombardo, Marc Meloni, Absiracf
{"title":"Model-based processing of multifrequency polarimetric SAR images of urban areas","authors":"Tiziana Maci-L, Pierfrancesco Lombardo, Marc Meloni, Absiracf","doi":"10.1109/DFUA.2003.1219955","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a two-step classification scheme for fully polarimetric SAR images. The classification scheme is composed of the cascade of an optimum segmentation stage, and an ML supervised classifier. Different segmentation schemes are described, specifically designed for mono- or multifrequency images. The classification scheme is applied to a set of fully polarimetric, multifrequency SIR-C images of the town of Pavia, in Northern Italy, considering all the possible pairs of polarimetric channels and the two bands individually and jointly, aiming at identifying the best combination for practical applications. Results show that for urban areas, the best performance is achieved by jointly processing the three polarimetric channels, and the minimum performance degradation is achieved considering the HH and the HV channels.","PeriodicalId":308988,"journal":{"name":"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFUA.2003.1219955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we describe a two-step classification scheme for fully polarimetric SAR images. The classification scheme is composed of the cascade of an optimum segmentation stage, and an ML supervised classifier. Different segmentation schemes are described, specifically designed for mono- or multifrequency images. The classification scheme is applied to a set of fully polarimetric, multifrequency SIR-C images of the town of Pavia, in Northern Italy, considering all the possible pairs of polarimetric channels and the two bands individually and jointly, aiming at identifying the best combination for practical applications. Results show that for urban areas, the best performance is achieved by jointly processing the three polarimetric channels, and the minimum performance degradation is achieved considering the HH and the HV channels.
基于模型的城市多频极化SAR图像处理
在本文中,我们描述了一个完全极化SAR图像的两步分类方案。该分类方案由最佳分割阶段级联和机器学习监督分类器组成。描述了不同的分割方案,专门为单频或多频图像设计。该分类方案应用于意大利北部帕维亚镇的一组全极化、多频SIR-C图像,考虑了所有可能的极化通道对以及两个波段单独和共同的情况,旨在确定实际应用的最佳组合。结果表明,在城市地区,三种极化信道联合处理的性能最佳,而HH和HV信道联合处理的性能下降最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信