Machine learning-based sentiment analysis of Twitter data

M. Hajirahimova, M. Ismayilova
{"title":"Machine learning-based sentiment analysis of Twitter data","authors":"M. Hajirahimova, M. Ismayilova","doi":"10.25045/jpis.v13.i1.07","DOIUrl":null,"url":null,"abstract":"The paper analyzes the views of Twitter users on the COVID-19 corona virus pandemic based on machine learning algorithms. The role of sentiment analysis increased with the advent of the social network era and the rapid spread of microblogging applications and forums. Social networks are the main sources for gathering information about users’ thoughts on various themes. People spend more time on social media to share their thoughts with others. One of the themes discussed on social networking platforms Twitter is the COVID-19 corona virus pandemic. In the paper, machine learning methods as Naive Bayes (NB), Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN) are used to analyze the emotional “color” (positive, negative, and neutral) of tweets related to the COVID-19 corona virus pandemic. The experiments are conducted in Python programming using the scikit-learn library. A tweet database related to the COVID-19 corona virus pandemic from the Kaggle website is used for experiments. The RF classifier shows the highest performance in the experiments.","PeriodicalId":306024,"journal":{"name":"Problems of Information Society","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of Information Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25045/jpis.v13.i1.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper analyzes the views of Twitter users on the COVID-19 corona virus pandemic based on machine learning algorithms. The role of sentiment analysis increased with the advent of the social network era and the rapid spread of microblogging applications and forums. Social networks are the main sources for gathering information about users’ thoughts on various themes. People spend more time on social media to share their thoughts with others. One of the themes discussed on social networking platforms Twitter is the COVID-19 corona virus pandemic. In the paper, machine learning methods as Naive Bayes (NB), Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN) are used to analyze the emotional “color” (positive, negative, and neutral) of tweets related to the COVID-19 corona virus pandemic. The experiments are conducted in Python programming using the scikit-learn library. A tweet database related to the COVID-19 corona virus pandemic from the Kaggle website is used for experiments. The RF classifier shows the highest performance in the experiments.
基于机器学习的Twitter数据情感分析
本文基于机器学习算法分析推特用户对新冠肺炎疫情的看法。随着社交网络时代的到来,以及微博应用和论坛的迅速普及,情感分析的作用越来越大。社交网络是收集用户对各种主题的想法信息的主要来源。人们花更多的时间在社交媒体上与他人分享他们的想法。社交网络平台推特上讨论的主题之一是COVID-19冠状病毒大流行。本文采用朴素贝叶斯(NB)、支持向量机(SVM)、随机森林(RF)、神经网络(NN)等机器学习方法分析了与COVID-19冠状病毒大流行相关的推文的情绪“颜色”(积极、消极和中性)。实验使用scikit-learn库在Python编程中进行。实验使用了Kaggle网站上与COVID-19冠状病毒大流行相关的推文数据库。在实验中,射频分类器表现出最高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信