Spectral Tuning of Gold Nanoparticles Embedded in Dielectric by Changing Anisotropy and Interparticle Interaction: A Mathematical Correlation between the Shape and Interaction
{"title":"Spectral Tuning of Gold Nanoparticles Embedded in Dielectric by Changing Anisotropy and Interparticle Interaction: A Mathematical Correlation between the Shape and Interaction","authors":"J. K. Majhi","doi":"10.1109/VLSIDCS47293.2020.9179927","DOIUrl":null,"url":null,"abstract":"The theoretical studies of optical absorption (OA) properties of anisotropic non-interacting Au nanoparticles (NPs) and the spherical interacting Au NPs embedded in dielectric matrix have been carried out separately. For the studies we have considered a modified Garcia et al. model depend on Maxwell-Garnett (MG) theory where anisotropy of the particles are represented by a parameter β known as shape parameter and interaction is represented by the parameter K. For calculation of OA spectra of anisotropic particles, the values of β is varied from 0.05 to 1.0, considering K = 0 and keeping particle radius fixed at R = 2 nm. The OA spectra of anisotropic Au NPs in the above range of β exhibit a large redshift of surface plasmon resonance (SPR) from 500 - 832 nm in contrary to what is observed for spherical non-interacting particle of same size at an around 520 nm. An exponential type decay of SPR peak position with increase of β has also been observed. The almost similar nature of OA spectra and the decay behavior of the SPR peak with decrease of K have also been observed for interacting spherical Au NPs by varying the interaction parameter K from 20 to 80 of same particle size. The observation gives a correlation between the parameter β and K which was not established. This correlation is essential and helpful for different applications of anisotropic Au nanoparticles in plasmonic, surface enhanced Raman scattering (SERC), photonics, optoelectronics, and others.","PeriodicalId":446218,"journal":{"name":"2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIDCS47293.2020.9179927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The theoretical studies of optical absorption (OA) properties of anisotropic non-interacting Au nanoparticles (NPs) and the spherical interacting Au NPs embedded in dielectric matrix have been carried out separately. For the studies we have considered a modified Garcia et al. model depend on Maxwell-Garnett (MG) theory where anisotropy of the particles are represented by a parameter β known as shape parameter and interaction is represented by the parameter K. For calculation of OA spectra of anisotropic particles, the values of β is varied from 0.05 to 1.0, considering K = 0 and keeping particle radius fixed at R = 2 nm. The OA spectra of anisotropic Au NPs in the above range of β exhibit a large redshift of surface plasmon resonance (SPR) from 500 - 832 nm in contrary to what is observed for spherical non-interacting particle of same size at an around 520 nm. An exponential type decay of SPR peak position with increase of β has also been observed. The almost similar nature of OA spectra and the decay behavior of the SPR peak with decrease of K have also been observed for interacting spherical Au NPs by varying the interaction parameter K from 20 to 80 of same particle size. The observation gives a correlation between the parameter β and K which was not established. This correlation is essential and helpful for different applications of anisotropic Au nanoparticles in plasmonic, surface enhanced Raman scattering (SERC), photonics, optoelectronics, and others.