Implementation of Binary Neural Network with Low Temperature Polycrystalline Silicon TFT SRAM Array

Mengqian Zou, Jun Li, Xiaojun Guo
{"title":"Implementation of Binary Neural Network with Low Temperature Polycrystalline Silicon TFT SRAM Array","authors":"Mengqian Zou, Jun Li, Xiaojun Guo","doi":"10.1109/IFETC53656.2022.9948493","DOIUrl":null,"url":null,"abstract":"Integration of signal pre-processing functions with the thin-film transistor (TFT) sensor array on the same substrate would be able to reduce the required hardware resource and power consumption for the data movement and subsequent processing. In this work, a 64×64 static random-access memory (SRAM) array is designed based on the low temperature polycrystalline silicon (LTPS) TFT for implementation of binary neural network (BNN), which is then used for recognition task with the MNIST dataset. The simulation results prove that a combination of the binary-operated SRAM and the noise-tolerant BNN would be able to alleviate the influence of device performance fluctuation to pattern recognition accuracy.","PeriodicalId":289035,"journal":{"name":"2022 IEEE International Flexible Electronics Technology Conference (IFETC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Flexible Electronics Technology Conference (IFETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFETC53656.2022.9948493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integration of signal pre-processing functions with the thin-film transistor (TFT) sensor array on the same substrate would be able to reduce the required hardware resource and power consumption for the data movement and subsequent processing. In this work, a 64×64 static random-access memory (SRAM) array is designed based on the low temperature polycrystalline silicon (LTPS) TFT for implementation of binary neural network (BNN), which is then used for recognition task with the MNIST dataset. The simulation results prove that a combination of the binary-operated SRAM and the noise-tolerant BNN would be able to alleviate the influence of device performance fluctuation to pattern recognition accuracy.
用低温多晶硅TFT SRAM阵列实现二值神经网络
将信号预处理功能与薄膜晶体管(TFT)传感器阵列集成在同一衬底上,可以减少数据移动和后续处理所需的硬件资源和功耗。在这项工作中,基于低温多晶硅(LTPS) TFT设计了一个64×64静态随机存取存储器(SRAM)阵列,用于实现二进制神经网络(BNN),然后将其用于MNIST数据集的识别任务。仿真结果表明,将二进制操作的SRAM与耐噪的BNN相结合,可以缓解器件性能波动对模式识别精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信