Microinstrument for optical monitoring of endothelial cell migration under controlled tension/compression via integrated magnetic composite polymer actuation
{"title":"Microinstrument for optical monitoring of endothelial cell migration under controlled tension/compression via integrated magnetic composite polymer actuation","authors":"B. Gray, M. Rahbar, A. Babataheri, A. Barakat","doi":"10.1109/NANO.2014.6968129","DOIUrl":null,"url":null,"abstract":"We present a microfabricated platform that allows simultaneous application of controlled stretch/compression forces and fluid flow shear stresses during endothelial cell (EC) live-cell monitoring. Our device employs a highly flexible magnetic composite polymer (M-CP) for actuation of a flexible microchannel system. We combine our M-CP with micropatterned non-magnetic polydimethylsiloxane (PDMS), resulting in flexible microsystems with integrated actuators and microfluidic channels whereby we can optically visualize cells in order to monitor various aspects of cell behavior including migration, proliferation, and morphological changes. The M-CP can be rendered permanently magnetic, so it can be employed for both substrate tension and compression using the same electro- or permanent magnet with pole reversal. We have demonstrated proof-of-concept of an instrument designed to simultaneously stimulate ECs grown in microfluidic channels with both fluid flow and mechanical stretch/compression using the new M-CP actuators.","PeriodicalId":367660,"journal":{"name":"14th IEEE International Conference on Nanotechnology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2014.6968129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We present a microfabricated platform that allows simultaneous application of controlled stretch/compression forces and fluid flow shear stresses during endothelial cell (EC) live-cell monitoring. Our device employs a highly flexible magnetic composite polymer (M-CP) for actuation of a flexible microchannel system. We combine our M-CP with micropatterned non-magnetic polydimethylsiloxane (PDMS), resulting in flexible microsystems with integrated actuators and microfluidic channels whereby we can optically visualize cells in order to monitor various aspects of cell behavior including migration, proliferation, and morphological changes. The M-CP can be rendered permanently magnetic, so it can be employed for both substrate tension and compression using the same electro- or permanent magnet with pole reversal. We have demonstrated proof-of-concept of an instrument designed to simultaneously stimulate ECs grown in microfluidic channels with both fluid flow and mechanical stretch/compression using the new M-CP actuators.