Detection of Epileptic Spike-Wave Discharges Using SVM

Yaozhang Pan, S. Ge, Feng Ru Tang, A. Mamun
{"title":"Detection of Epileptic Spike-Wave Discharges Using SVM","authors":"Yaozhang Pan, S. Ge, Feng Ru Tang, A. Mamun","doi":"10.1109/CCA.2007.4389275","DOIUrl":null,"url":null,"abstract":"In this work, support vector machine (SVM) is applied for detecting epileptic spikes and sharp waves in EEG signal. EEG data are obtained from two-channels EEG monitor on Swiss mice. Our technique maps these intracranial electroencephalogram (EEG) time series into corresponding novelty sequences by classifying short-time, energy based statistics computed from one-second windows of data. Numeric simulation studies demonstrate the effect of the SVM detection, and a comparison between SVM and artificial neural network with back-propagation algorithm is presented to show the advantages of SVM algorithm for detecting epileptic spike-wave discharge in EEG time series.","PeriodicalId":176828,"journal":{"name":"2007 IEEE International Conference on Control Applications","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Control Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2007.4389275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this work, support vector machine (SVM) is applied for detecting epileptic spikes and sharp waves in EEG signal. EEG data are obtained from two-channels EEG monitor on Swiss mice. Our technique maps these intracranial electroencephalogram (EEG) time series into corresponding novelty sequences by classifying short-time, energy based statistics computed from one-second windows of data. Numeric simulation studies demonstrate the effect of the SVM detection, and a comparison between SVM and artificial neural network with back-propagation algorithm is presented to show the advantages of SVM algorithm for detecting epileptic spike-wave discharge in EEG time series.
基于SVM的癫痫峰波放电检测
本文将支持向量机(SVM)应用于脑电图信号中的癫痫峰和锐波检测。脑电数据由瑞士小鼠双通道脑电监测仪获得。我们的技术将这些颅内脑电图(EEG)时间序列映射到相应的新颖性序列,通过对从数据的一秒窗口计算的短时间、基于能量的统计进行分类。数值仿真研究验证了支持向量机检测的效果,并将支持向量机与带反向传播算法的人工神经网络进行了比较,证明了支持向量机算法在脑电图时间序列中检测癫痫峰波放电的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信